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IMPORTANT NOTE

This volume was written by and for engineers and scientiats who are concerned with
the analysis and synthesis of piloted aircraft flight control systems. The Bureau of
Aeronautics undertook the sponsorship of this project when it become apparent that
many significant advances were being made in this extremely technical field and that
the presentation and dissemination of information concerning such advances would
be of benefit to the Services, to the airframe companies, and to the individuals con-
cerned,

A contract for collecting, codifying, and presenting this scattered material was
awarded to Northrop Aircraft, Inc., and the present basic volume represents the
the results of these efforts,

The need for such a volume as this ia obvious to those working in the field. It is
equally apparent that the rapid changes and refinements in the techniques used make
it essential that new material be added as it becomes available. The best way of
maintaining and improving the usefulness of this volume is therefore by frequent re-
visions to keep it as complete and as up-to-date as possible.

For these reasons, the Bureau of Aeronautics solicits suggestions for revisions and
additions from those who make use of the volume. In some cases, these suggestions
might be simply that the wording of a paragraph be changed for clarification; in other
cases, whole sectlons outlining new techniques might be submitted.

Each suggestion will be acknowledged and will receive careful study. For those which
are approved, revision pages will be prepared and distributed. Each of these will
contaln notations as necessary to give full credit to the person and organization re-
sponsible.

This cooperatlon on the part of the readers of this volume is vital, Suggestions for-
warded to the Chlef, Bureau of Aeronautics (Attention AE-612), Washington 25,
D. C., will be most welcome.

L. M. Chattler

Head, Actuating & Flight Controls Systems Section
Airborne Equipment Division

Bureau of Aeronautics



PREFACE

This volume, "Dynamics of the Airframe, " has been written under BuAer Coniract
NO as 51-514(c), in order to present to those concerned with the problems of designing
integrated aircraft controls systems certain basic information regarding aerodynamic
stability and control,

The purpose of this volume is to present those elements of aerodynamic stability and
control that describe the alrframe as a dynamic component of a control system. This
volume is written for the college graduate who has had training in system engineering
with the intent of providing him with the basic knowledge of rigid body airframe dynam-
ics that bears directly on aircraft control system design. No attempt has been made
to give anywhere near complete coverage to the subject of aerodynamic stability and
control; but rather, the attempt has been to give the system designer enough of the fun-
damentals so that he may work more closely with skilled aerodynamicists.

The approach used in this volumse has been to describe the transient behavior of the
airframe through the transfer function. Special attention has been given to the use of
an analog computer as a design tool and the Bode chart method of presenting results.
Also included is a detalled discussion of the stability derivatives that enter the transfer
functions. In these respects, it 18 hoped that this volume may also be of some value to
the practicing aerodynamicist.
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CHAPTER I
INTRODUCTION

The airframe is a prime unalterable component of the aircraft control system, The
control system also contains various mechanical and electrical components and in-
cludes a human pilot, The basic purpose of this volume is to construct and to discuss
a mathematical model, of use to the system designer, of the airframe component of
the overall system,

The motion of an airframe in flight is determined by the propulsive forces supplied
by the power plant, the force of gravity, the inertial characteristica of the airplane
and aerodynamic forces. To derive the equations of motion of the airframe, it is
necessary to equate the forces and moments acting on the airframe to the craft re-
actions, according to Newton's laws. The transfer functions relating the motion of the
airframe to a given force can then be determined by solving the equations of motion.
The transfer functions completely describe the transient motion of the airframe within
the limits of the approximations made during their derivation. The transfer functions
for various control deflections are derived in Chapter II,

Chapter I is devoted to an investigation of the characteristic motions of the airframe
by analysis of the transfer functions, which are expressed as ratios of polynomials
in the complex variable s, Useful approximations to the time constants, natural fre-
quencies and dampings contained in these polynomials will be presented, along with a
comparison of the exact and approximate results. These approximate results will
then be used to demonstrate the effects of various factors contained in the transfer
functions on the characteristic motions of the airframe. The effect of the flight ¢on-
dition of the airframe on motions caused by control surface deflections will be in-
vestigated by analyzing results of solutions of the equations of motion from an analog
computer.

Chapter IV presents a detailed discussion of the aerodynamic coeffictents which are
included in the transfer functions. These coefficlents are analyzed in relation to the
various factors that must be considered in their determination.

Methods of obtalning numerical values for the aerodynamic coeffic{ents are discussed
in Chapter V.,

I-1
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CHAPTER |l
DERIVATION OF THE AIRFRAME TRANSFER FUNCTIONS

SECTION 1 - INTRODUCTION

In this chapter, the transfer functions relating airframe
motion to control deflection are derived, The controls
considered are elevator, ailerons, rudder, throttle,
flaps, and dive brakes.

The equations of motion of an airframe are written by
equating the forces and moments acting on the airframe
to the craft reactions, in accordance with Newton's
laws. It is shown that a set of Eulerian axes may be
used advantageously as a frame of reference for writing
such equations, and the properties of this axis system
are then discussed, The theory of small perturbations
is introduced into the derivation to arrive at linear equa-

tions, and the restrictions that must be imposed on
these equations to permit consideration of the so-called
longitudinal motions of the airframe independently of
the lateral motions are described,

Laplace transforms and determinants are used to solve
the equations of motlon for the transfer functions.
Throughout the derivation of these transfer functions,
assumptions are made that partially restrict the range
of validity of these transfer functions, The assumptions
are discussed when introduced and are restated at the
end of the chapter,

SECTION 2 - EQUATIONS OF MOTION OF AN AIRFRAME WITH RESPECT TO AXES FIXED IN SPACE

In this section, the equations of motion of an airframe
are derived according to Newton's laws, that is, with
reference to axes fixed in space.

ASSUMPTION I. The airframe is assumed to be a
rigid body.

A rigid body is defined as one in which the distances
between any specified points in the body are invariant .
This assumption elimlnates consideration of forces act-
ing between individual elements of mass, and it allows
the airframe motion to be described completely by a
translation of the center of gravity and by a rotation
about this point,

Thederivation of the equations of motion incorporates this
assumption, and later some of the effects of aeroelastic
deflection are discussed. (An example of aeroelastic
defiection i8 wing bending caused by the aerodynamic
loads.)

Since all motion i8 relative, a suitable frame of ref-
erence describing alrframe motion must be selected;
to meet this requirement, the following assumption is
made:

ASSUMPTION II. The earth s assumed to be fixed in

space, and, unless gpecifically stated otherwise, the
earth's atmosphere 1s assumed to be fixed with respect
to the earth.

This assumption provides the needed frame of reference
without imposing any practical limitations on the equa-
tions to be derived.

Consider the motion of an airplane referred to a right-
hand system of Cartesian axes fixed in space. The alr-
plane has a mass m, a linear velocity ¥y, and an angular
velocity . The component quantities related to these
inertial axes are illustrated in Figure II-1 and tabulated
in Table II-1.

Figure II-1. g R
Notion of An Aidrplane

Referred to Inertial Axes

Newton's second law of motion states that the rate of
change of momentum of a body is proportional to the
force applied to the body and that the rate of change
of the moment of momentum is proportional to the torque
applied to the body, (II-1)and (II-2) are mathematical
statements of this law:

11-1
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where LF,, LF,, and ZF, are the summations of the
components of applied force parallel to the x, y, and 2
axes respectively; where ZL,ZM, andZN are the sum-
mations of the components of the applied moment about
the x, y, and z axes respectively; and where h,, h,,
and h, are the components of the moment of momentum
about the x, y, and z axes respectively.

airplane after all fuel is expended, but the time rate of
change of mass due to fuel consumption is relatively
small and may be safely neglected for the periods of
time required for most analyses. (The effact of firing
ammunition and dropping external stores Is considered
in Section 4 of Chapter 1IV.)

Many of the following pages are devoted to an expansion
of equations (II-2) by Investigating the dynamics of an
infinitesimal element of mass du of the airplane shown
in Figure II-1.

Figure II-2 shows the components of linear velocity of
dm due to angular velocity @. The accuracy of this re-
presentation can be verified by multiplying the proper
components of angular velocity and displacement ac-
cording to the right-hand rule for vector quantities.

The components of the moment of momentum are cal-
culated by summing the moments of these velocity
vectors about each axis and multiplying by the mass dm.

Linear Angular Summation Bummation Displace~ Moments Moment
Axi Velocity | velocity | of Moments of Forces ments of Momen- of
X181 along Along About Along About tum About Inertia
Axis Axis Axis Axis Axis Axis
g N I
X ] M{lclei'.lg L P, ¢ x 11
y v Pitgunz M iF, ] h, Ly
Vel.
R
z W Yawing N IP, ¥ hy Iy
Vel.

Table II-1 Notation

To allow the mass of the airplane to be written outside
the differentiation sign in (II-1), another assumption
is made:

ASSUMPTION III. The mass of the airplane is assumed
to remain constant for the duration of any particular
dynamlic analysis.

Actually, there 1s considerable difference in mass be-
tween an airplane carrying a full fuel load and the same

For example;
dh, = y(yP)dm + 2(zP)dm - z(xR)dm - y(xQ)dm
The set of equations obtained in this way consists of;

(11-3) dh = (y3+z3)Pdm- zxRdm~ yxQdm
dh, - (z3+ x3) Qdm - xyP dmn - yzR dm

dh = (x3+ y})Rdm- zxP dn- zy Qdm

Figure I1I-2, Linear Valoc“y Components of an Elemont of Nass Due to an Angular
Velocity @ Having Camponents P, Q. and R
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For a finite mass, the components of the moment of
momentum are the integrals of (1I-3) over the entire

mass;
hy »PJ(y?+ 2%)dn - Qfxy dn-R[xz dn

(I-4) h,-Qf(z" xHdn - Rlyzdn-pPlyx dn
h,=Rf(x?+y?)dn - P{zx dn~ Q/zy dn

The integral S(y?+z%)dn {s defined as the moment of
of inertia, L,, of the entire mass of the airplane about
the x-axis, Similarly, the integral /xydm jg defined
as the product of inertia, L,. The remaining Integrals
in (II-4) are similarly defined and the equations may be

rewritten as;
by=PL,-QL,-RI,
h,=QL,-RL,-PL,
b,*RL,-PL,-QL,

where L, = L,, from the form of the integrals.

Chapter 11
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The derivative 4! may be found by differentiating each

d
of (11-6) with retspect to time. When these rates of
change of moment of momentum of an aircraft are sub-
stituted tn (II-2), the equations of motion relative to

inertial axes become:

L] -d—u
(11-6) Zpendd

4y
dt
de

EF"II—&-E-

dn, - ;
zb- —HL. Plll + Plll - QII,- QIl,- kIll- Rtll

z l’,-m

dh, . .
IMeL-Qr, eQt, -RI, -RI, -PI, -PL,,

dh, . . . .
IN= dt'-m“'nt"-n"-n"-cu,,-qx,,

SECTION 3 - EQUATIONS OF MOTION WITH RESPECT TO EULERIAN AXES

The equations of motion written with respect to fixed
axes, (1I-6), could be used to describe the motion of an
airplane as a function of time, but there are reasons why
it is expedient for this purpose to use an Eulertan axis
system. In this section, the nature of Eulerian axes
and the reasons for their use are discussed, and the
equations of motion of an alrframe are expressed in
terms of quantities measured relative to these axes.

Constder an airplane flying with an absolute linear veloc-
ity, V;, and an angular velocity, &, about its center
of gravity, At every instant, another right-hand system
of orthogonal coordinate axes(x,,y,.z,), fixed in space,
and originating at the center 01 gravity, can be super-
imposed on the airframe, At each instant, the orienta-
tion of these axes relative to the airframe is the same,
With respect to this axis system, the alrframe has linear
and angular velocities and accelerations but no displace~
ments, Flgure II-8 shows the airframe with super-
imposed axes at three different instants along its flight
path, It may be noticed that the velocity vector is not
necessarily aligned with any particular axis.

<)

Suppose three instruments which read absolute linear
velocity are mounted in the airframe at the center of
gravity. If these instruments are aligned with the three
axes, x,, ¥, 2z, they resolve the absolute linear
velocity, V., into its three components along these axes .
According to the notation in Table II-1, these component
velocities are u,, V,, and w,, alongthe x, y, and 2,
axes respectively.

At any instant during the flight of the airplane, these
instruments measure the linear velocity of the airplane
relative to fixed space. However, because these in-
struments and their axes are fixed to the airframe, they
have the same instantaneous angular velocity as the air-
plane, a factor which must be taken into account when
writing the expression for the absolute acceleration of
the airplane in terms of the velocity measured by these
instruments, For {nstance, suppose an airplane is fly-
ing at constant speed with a constant angular velocity .
These conditions are met when an airplane flies in a
circular flight path as in Figure 11-4,

Airplune
Flight

b
Pn:x.z._—

Figure JI-3, Motion of Airplane with Suporimposed Axes
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V.
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Airplane

Flight
pPath

Figure II-4, Airplane in Flight with Constant Speed and Constant Angular Velocity

It may be seen from this figure that the velocity vector
measured by the instruments is invariant relative to the
x;, ¥,, and 2z, axes.

However, the airplane is in accelerated flight because of
its circular flight path and must therefore have acen-
tripetal acceleration. For the conditions shown in Figure
14, this centripetal acceleration is the only acceleration
of the airplane, and it can be expressed as the vector
cross product of the angular velocity @ and the linear
velocity V,:
(11-7)

=@V,

where the instantaneous linear velocity, ‘71 , 18 measured
relative to the x,, y,, and 2, axes,

An airplane flying with varying linear velocity and zero
angular velocity corresponds to an airplane flying along
a straight flight path with varying speed as in Figure
II-5.

Airplane
Flight

B

where V, is again measured relative to x,, y, , and z,
axes,

For an airplane having both an angular velocity and a
varying linear velocity measured with respect to axes
such as x,, ¥,, z,, the expression for the absolute
acceleration (i.e., the acceleration measured relatlve to
inertial axes) can be determined by combining (1I-7) and
(I1-8) to form the equation:

(11-9) RS- S A

An expression for the rate of change of the moment of
momentum {n terms of quantities measured relative to the
x,, ¥,, and z, axes can be determined in a similar way .
Suppose three rate gyroscopes are mounted in the air-
plane at the center of gravity so that they are allgned
with the x;, %, and z, axes. These gyroscopes then
measure the three components of the instantaneous an-
gular velocity of the airplane relative to fixed space.
By using the notatlon in Table II-1 again, these com-
ponent velocities are called P,, Q;, and R, about the

Path—&
V.r ?‘ X) VT ; ‘ X, v"’"
yi oz Y, z)

Figure II-5, Airplane in Flight with Varying Forward Velocity
and Zero Angular Velocity

The forward velocity vector measured relative to the x,,
Yy, and #, axes varies with time. The airplane is thus
In accelerated flight, and this acceleration is equal to
the rate of change of the veloclty as expressed In the
equation:

(11-8) 1.

o

%, ¥, , and z, axes respectively. Since these velocitles
are the {nstantaneous absolute angular velocities of the
airplane, the expressions for the components of the
moment of momentum derived in Section II-1 and written
in (1I-6) are ar .'tcable to the x;, y,, and £, axes,

Equations (11-5) are rewritten below in terms of quan-
titles referred to the x,, y,, and z; axes.



i(ll-l()) hy =PI, - Qlll! Rilax
: h, -Q] -RI, . -P I,

h, -RlI" P I.-9I,,

Yy

; The total moment of momentum b is defined as
Th,+Th, +kh, , where I, J, and kare unit vectors
ong the x,, Y, and Z,axes respectively.

Airplane

Flight
Path

\e
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Each of these instantaneous axis systems along the flight
path, such as x;, ¥;, and 2, in the discussion above, is
called an Eulerian axis system. Thus an Eulerian axiy
system s a right-hand system of orthogonal coordinate
axes which has its origin at the center of gravity of the
airplane and its orientation fixed with respect to the air-
plane, Velocities of the airplane measured relative to
these axes are absalute velocitles, since, at any instant,
the Eulerian axes are considered to be fixed in space ,

O

Ié\(/

Figure I1-6. Airplane Before and After Being Accelerated

fquations (II-10) show relations between the components
the moment of momentum and the components of the
ipstantaneous angular velocity. Since the instruments
asuring these angular velocities are aligned with the

1 ¥y, 8nd 2z, axes and have the same instantaneous
angular velocity as the airplane, the moment of mo-
entum vector, h , has the same angular velocity with
reapect to the x,, ¥,, and 2z, axes. This is exactly
parallel to that for the linear velocity vector. Again,
the absolute rate of change of the moment of momentum
(‘:elltlve to inertial axes) is composed of two terms, as

(@-11)

The term ? on the right side of (II-11) arises from

. the fact that the moment of momentum is changing in-
- ltantaneously relative to the x, , v, , %, axes, and the
term « 1 h arises from the fact that the x, , ¥Y,, % axes
have an instantaneous angular velocity, z , with respect
tothex,y, z axes.

U
o

. Companent Velocitiea of Airplane Shown in Flgure I[-6
Figure 1I-7,

One reason why Eulerian axes are particularly useful
in the study of airframe dynamics is that velocities
measured with respect to these axes are the same as
the velocities that would be measured by instruments
mounted in the airplane. This point, demonstrated in
the discussion above, has been very valuable in airframe
controller design. Another reason is that moments and
products of inertia measured relative to Eulerian axes
are independent of time in view of Assumption III be-
cause these axes do not move with respect to the air-
frame. The moments and products of inertia are, how-
ever, functions of the weight loading of the airframe and
the orientation of the axes with respect to the airframe .
(This point is discussed in a later section.)

A simple two dimensional example which is helpful in
the intuitive understanding of (11-9) and (lI-11) is pre-
sented next, and the equations of motion referred to
Eulerian axes are then expanded in terms of the com-
ponent velocities.

Figure 11-6 shows the plan view of an airplane at two
points along its flight path, The drawing at the left rep-
resents the airplane in an unaccelerated flight condition
and the drawing at the right represents the same air-
plane some time after it has passed through rough air
which has caused it to accelerate. The Eulerian axes
at the two instants pictured are represented by x, y and
x', ¥'. At the first instant, the velocity components
of the airplane are U and V along the x and y axes re-
spectively; a small increment of time, & t, later, when
the airplane has rotated through an angle Sw, the llnear

veloclty components are U+sU and V¢« 5V with respect to
the x', y' axes (see Figure II-7).

When the acceleration is written as the time rate of
change of the velocity, the components of acceleration
with respect to the original x, ¥ axes become:

™ (U¢8U)c0=|8{v (V+ 8V)sind ¢ - U
t

(11-12) a e
~0 5t
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By considering 3¢ to be a small angle, by setting
sin8y =8¢ and cos 8y= 1, and by neglecting products of
-‘eltas, the x component of acceleration becomes:

a, ~Lim 3u-Viy  dU_yd¢

(1r-13) §e% TThE at | at

The rate of change of ¥ is an angular velocity about the
z axis. Table II-1 shows that is equal to R, Making

this substitution in (11-13) yields:

(11-14) ag - %tu - VR
Similarly,

dyv
(1£-15) gy~ g ' UR

In this restricted two dimensional example, P and Q,
the angular velocity components about the x and y axes
respectively, and W, the component of linear velocity
along the z axis, were purposely selected to be zero.
Thus, the total angular velocity @ is equal to R, and the
total linear velocity Viis the vector sum of the two com-
ponents of linear velocity along the x and ¥ axes. By
using the relationships:

(11-186) @R
and
(II-1T) V, sUeV

and by keeping in mind the rules for vector cross mul-
tiplication, the results of {I[-14) and (1I-15) can be com-
bined into the single equation;

vy _ -

- — 23V

(11-18) By

Equations (I1-18) and (11-9) are then identical,

In the actual case of three dimensions, (II-9) applies .
Recalling that the components of the linear velocity V;
are defined as U, V, and W, and that the components
of the angular velocity & are defined as ¥, §, and R

along and about the x, y, and 2z axes respectively,
(11-9}) may be expanded as the cross product of two
vectors,

A V'I' -

(11-19)

[=Je - Nl
< O
E X

(IE-20) G4V, «1(QU - RV) » J(RU - PW) + K(PV - QU)

By substituting the results of {(1I-20) into {[I-7), the
components of acceleration can then be written as:

a, =0+ QN-RY
a, =V +RU-PW
dye WePV- QU

(11-21)

-6

Equation (II-11) is repeated for reference:

(11-22) dh o,

dt

+wxh

cE

This expression can be written in component form as;

1-23

( ) dh, | dhy L ooopn
dqt I, dt =
by |- B e hp-hp
., 6t
dn, dh,
b, hP - h
at |, "~ ar Pl

Substituting (II-10) into (II-23) and performing the in-
dicated differentiations yield (I1I-24). It should be noted
that since the moments and products of inertia measured
with respect to Eulerian axes are constant, (11—24) do
not contain the terms similar to I,, and I, which
appeared in (II-6);

(11-24)

- l.:’lu - éxu - iull' @ (I, I’,)

- PQI,, - Q%,, + R ¢ PRI,

ﬂ‘;{‘ « QI -RI,, -PL ¢ PR(L,, - I,,)
b
L @RI, -R3L,, P, ¢ PAL,,

« RI,-P1,,-QI, +PQU,, -1,
~ PRI, -P3[, +Q3,, + QRI,,

at

aba

In the discusslon up to this point, the orientation of the
of the Eulerian axes with respect to the alrframe has
been arbltrary, and (11-24) are In general form. There
are several factors which Influence the orientation
chosen for the Eulerian axes, but these factors are
discussed, for the most part, in a later section.

Because the geometry of the airframe is conventional,
a simplification of (I1-24) can be made Immediately by
choosing a particular orientation of the y axis, but be-
fore considering an axis system oriented as the one in
Flgure 1I-8, another assumption is made:

ASSUMPTION IV. The xz plane is assumed to be a
plane of symmetry.

Assumption IV is a very good approximation for most
airplanes, and in the light of this assumption, it can be
seen from Figure 11-8 that there is both a positive and
a negative value of y for each value of z; consequently,
L= fyzdn ~0, and similarly, I, = fxydm -0.

The expanded for.a f the equations of motion of an air-
frame referred to Eulerian axes can then be written as:




Plane of Symmetry

Airplane C.G.

X
Flgure 11-8, Airframe Plane of Symmetry

left sides of (II-26) are the summations of the ex-
inal forces and moments applied to the airplane in
it. The external forces can be classified as gravity
fees, acrodynamic forces, and thrust forces, Before
jweribing these forces, some explanation of how they
W included in the equations of motion is given,

juilibrium flight is defined as unaccelerated flight,
; ght along a straight {light path during which the
ar veloctty vector measured relative to fixed space 18
Jeariant and the angular velocity is zero. For the pur-
bues of the following discussion, a condition called
lght is defined as flight during which vectors
h with respect to Eulerian axes are invariant,
cording to this definition, equilibrium flight and flight
ith constant angular velocity are also steady flight .

Bhe gravity force can be considered to act at the center
ol gravity of the airplane, but since the origin of the
jEulertan axes system i8 also located at the center of
jravity, this force nmiakes no contribution to the sum-
Mhation of external moments, However, it will con-
Mribute components to the summation of external forces .

PTo find the expressions for the components of gravity
gjorces to be used in the equations of motion for an air-
F plane disturbed {rom some steady flight condition, a

} ’7:, 4y
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(I1-25)

IF, ~a(0+Qw-RY]
ZF, ~m(V+RU-PW]

CIF ~m{WePY- QU]
SL = bI,, -RI ¢+ QR(I,, - 1,,)-PQ1,,

M - QI:: PRI, =Dy ,) - R:III M P,Iu

IN  RI - PI,, +PUI,, - 1,,) + By,

SECTION 4 - EXPANSION OF APPLIED FORCES AND MOMENTS

Thus, flight at a constant rate of turn could be clasalfied
as steady flight.

The disturbed motion of an airplane at any instant can
always be considered the result of disturbing the air-
plane from some steady flight condition, This motion
may be referred to as disturbed flight and the Eulerian
axes under these conditions are referred to as disturbed
axes, The forces acting on an airplane during disturbed
flight can consequently be considered equal to the sum of
the forces acting during the ateady flight condition and
the increments of force caused by the disturbance. As
shown later, writing the forces according to this con-
vention permits a simplification of the resulting equation
of motion.

SECTION 6 - EXPANSION OF THE GRAVITY FORCE

general direction cosine matrix is derived which can be
used to express the vectors In any Eulerian axis systemn
as vectors In another Eulerian axis system displaced
from the first by the Eulerian angles ¢, ¢, and ¢.

Eulerian angles are defined as those angles through
which one axis system must be rotated to superimpose
it upon another having an initial angular displacement
from e first. In the following pages, these angles are
defined more completely by rotating an axis system

¥

Figure 11-9.
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through each of the Eulerian angles in the derlvation of
‘he general direction cosine matrix which follows, The
order of rotation and the axes about which these rotations
are m.de are shown, This order of rotation {s important
because all subsequent rotations must have the same
order ! the Indicated operations are to give correct
resuits.

Figure II-9 shows a vector in the x, y, z axls system
with components X, Y, 2, The xand ¥y axes are rotated
In accordance with the right-hand rule through a positive
angle, ¢, about the Zz axis Into the position of the Ix,,
¥,, <4yaxes. The components of the vector along these
axes are:

X, «X cos y+ Y gin ¢
Y,~Y cos ¢~ Xain ¢
Z, 2

(11-28)

X, v%1 sin 6
X, X, cos 6
9j 00° Yl & Ya
ol te
X, X, 90° 90°
90°
Z, cos &
2,
Y%,
Zl sin & -~
5
22 vzl

In Figure IJ-10, the x;, and z, axes are rotated through
a positive angle, 8, about the ¥ axis into the position
of the x; VY;, Z; axes. The components of the vector
In the new system are:

(11-27) X,*X, cos £-2, 8in 8
Y - ¥,

ZI-Zl cos e.x, sin 8

Figure [I-10

Finally, as shown in Flgure II-11, the ¥, and z, axes
are rotated through a positive angle, ¢, about the x;
axis into the position of the x;, ¥y, z, axes. The com-
ponents of the vector {8 this new system are:

Xy =X,
Y,-Ya cos ¢ 'Z‘ sing
2,°2, cosd -Y, sing

(11-28)

Substituting (II-26) and (1I-27) Into (II-28) yields the

following equations:

Xy =X cos 6 cos w+Y cos 6 8in -2 sin @

Y, « X(cos ¢ sin @ sin ¢ - sin ¢ coO8 @)
+Y(cos y cos ¢+ 8in ¢ sin 8 sin ¢)

+ Z(cos 6 8in @)
Z,=X(cos y sin 8 cos ¢+ 8in ¢ sin @)
+ Y(8in y sin € cos ¢ - cos ¢ 8in @)

+ Z(cos 8 cos ¢)
X, sin 4

(11-20)

This set of equations may be conveniently written tn the
following matrix {orm:

General Direction Cosine Matrix

(11-30) Initial Ploal
Ayatwn Byatm
conf cosy coad ainy -sinf X -i,
congainfaingd coaoondd ocoaBatod Y ¥
-etnyooagd ¢ainyainb atag b
conpainfecoap atnyninfooad coslcosd Z z
+sinyaingd ~ cony alngd

Figure 1I-11.
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the

Thie components of gravity acting along the axes of a

i isturbed airframe are now determined in terms of the
gravity components acting along the steady flight axea
f' nitial axes) and the Eulerian angles,

e components of force due to gravity acting on an atr-
Blane which is in steady flight and which has initial
angles 4, and #, with respect to the gravity vector can be
Nound from Figure I1-12 by direct resolution of the
gravity force along the x,, y,, and sz, (steady flight)

gquilibrium Axes = Eulerian Axes

W cos 6, cos ¢,

¥ oos 6, 8in ¢,

Figure I11-12.

p. (i1-31) X,*-Wsin 6,
3 Y, ¥cos 6, sin ¢,

Z,» Wcos §, cos ¢,

The components of gravity acting along the disturbed

Eulerian axes can then be determined by substituting
(11-31) into (11-29);

K+

(11-32)
Xy* (-¥W Bin&,)coB 8 cosy +(W cos 8,8indy) cos 8 siny

~(W cosqcos g )sind
Yy (-'l( sing Xcosysindsing -siny cos ¢)
+(W cos g 8ing,) (cusy cosd +siny 8in 0 sind)
+(¥ cos f,cosd) (cos 0 sin ¢)
Zy= (-Waing,)(cosy sin0 cos ¢ +a8iny sin ¢)
+(W cos ,8ind) (siny 8in O cos¢ ~cosy sin @)
+(W cos f,cosd) (cos b cos @)

The left sides of the firat three equations of (11-26) are
the summations of the aerodynamic, thrust, and gravity
n-9
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forces applied to the airplane at any instant during flight .
Each of these summations may be rewritten as:

IP, = LF; ¢« £ (Gravity)
IF, = ZF,+ f,(ﬂravity)
ZFg= LFg+ 1 (Gravity)

The primed quantities in (II-33) are the summations of
the aerodynamic and thrust forces; the gravity force
enters the equations explicitly as f (Gravity); and the
subscripts denote the axis along which the component of
the gravity force is acting. Equations (II-33) express the

components of gravity acting along the Eulerian axes at
any Instant as X,, Y, and Z,. It should be noted that if

the instant under consideration occurs during the steady
flight condition, then §=-¢=y¢+0, and the components
Xy, Yy, and 2, reduce to (1I-31). (II-33) can now be

written as:

(11-38)

IP. = LF,+ X,
IP, = IF)+ Y,
IF, = IF;+ 2,

(11-34)

The force relations from (II-25), with the gravity terma
transposed to the right side, are rewritten as:;

IF,em{Ue Qu-RV) - X,
LF,=m(Ve«RU-PW) -Y,
ZF, =m(kePV- QU) - Z,

{11-35)

By substituting (II-32) in (I1-35), the equattons of (II-25)
may be written in the form:

(11-36)
b3 F‘;-m[f) . Qw -RV]«(W 8in g, )cos & cos ¢y
-(W cos g,5tn¢;)cos 8 siny « (W cos f,co8dy)sin 6

SFi~a{V+RU-PN] « (K 81n6) (cosy sin6 sin¢ -siny cos 4)
=(W cos §,8in¢) (cosycosp+siny 8indsin ¢)

~{W cos Bocos dbo)(cosa sin @)

£ #2-mlWePV-QU] + (W 8in8,) (cos ¢ sin @ cos é +siny sin )
-(W cosf8ind ) (siny sin @ cos¢ -coay sin ¢)

-(W cos@ocos%)(coaﬂ cos¢ )

IL- |;I" - hI" *R(I,, - 1,,) - Par,,

IM=QL,, e PR(I,, -1,,) - R3L,, +P3I,,

IN«RL,, =PI, + PRIy, - T,0) ¢ RRI,,

These equations are now complete except for the ex-
ternal forces and moments on the left side which will

Include aerod- .. mic and thrust forces as well as mo«
ments due to cu.trol surface deflection,
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SECTION 6 - RELATION BETWEEN THE RATES OF CHANGE OF THE EULERIAN ANGLES AND THE
INSTANTANEOUS ANGULAR VELOQCITIES

Equations (11-38) are to be linearized before they are
sxpanded to include the aerodynamic and thrust forces .
Jut first, the relation between the rates of change of
the Eulerian angles and the instintaneous angular veloci-
ties 1s derived,

Corsider an alrplane with axes in the instantaneous posi-
tion of the x, ¥;, 2z axes displaced from the steady
flight axes by the Eulerian angles ¥, 8, and ¢. The
instantaneous angular velocities are P, Q, and R, and
the vectors representing these angular velocities
are directed along the x;, ¥,, and z, axes respectively .
In the derivation of the general direction cosine matrix,
(I1-30), it was shown that the Fulerian angle ¢ was a
rotation about the z axis (see Figure 11-9) and that the
Eulerian angles ¢ and ¢ were rotations about the y, and
x, axes respectively (see Figures [I-10 and 1I-11). The
rates of change of these Eulerian angles can be repre-
sented as vectors pointed along the axes about which the
individual rotatlons take place. Thus ¢, 8, and ¢ are
represented as vectors along the z, y,, and x, axes,re-
spectively. Figure II-13 shows a composite picture
of the axes with the vectors representing both the rates
of change of the Eulerian angles and the instantaneous
angular velocities. It can be seen that the vectors y ,

9, and ¢ are not orthogonal,

The positions of the vectors in Figure II-13 can be
checked by performing the actual rotations. The follow-
ing relations can be obtalned by direct resolution:

Ped-y sin 6
Q=6 cos ¢+ sing cos 6
R=y cosdcosf - 6 sin ¢

(11-37)

The rates of change of the Eulerian angles can be most
easily expressed as functions of the instantaneous an-
gular velocities by solving (IX-37) with the aid of deter-
minants, This procedure yields the following results:

(i;=P+Q tan @ sin¢ + R tan® cos ¢

é-Q cos ¢ -R sin ¢

. cCOB8 ¢ sln ¢

¥ R(cosa)' Q(cos 8

These relations are presented here for two reasons,
First, they are needed to evaluate the approximations
made when the equations are linearized, and second,

they are potentially useful in the solution of trajectory
problems.

(11-38)

SECTION 7 — LINEARIZATION OF THE EQUATIONS OF MOTION

Equations (II-36) equate the aerodynamic and thrust
forces acting on an airplane to the gravity forces and to
the resulting inertia forces, These equations are non-
linear since they contain products of the dependent
variables and also because the dependent variables
appear as transcendental functions.

In Section II-4 it was stated that airframe motion could
always be considered the result of disturbing the air-
frame from some steady {light condition. Accordingly,
each of the total instantaneous velocity components
of the airframe can be written as the sum of a velocity
component during the steady Night condition and a change
in velocity caused by the disturbance:

([1'39) = U +u
=V, v
wo tW
=P, +p

“Q,+q
R =R, +r

O T =E®E < o
x

The zero subscripts tn (I1I-33) indlcate the steady flight
velocities, and the lower case letters represent the
thanges in the velocities (disturbance velocities). By
substituting (I1-39) in (il-36) and by considering that

d..g.?.: d_PE = 0, etc_.
dt dt

(11-40)
b m[fn Q. W, + W oa+Q w+ wg
RV, -Rv-V r-vr
+(g 8ing)cos dcosy -(g cos 6, 8ln ¢ )cosdainy
+(g cos g, cosdy)sin 6]
£F) = miv+UR.+U r+Rous ru-P W, -P w-¥%p
-wp + (g sing)) (cosy sinfaing ~8iny cos @)
-(g cos@ sindg)(cosy cosd +siny sind sin ¢)
-(g cos 0, cosdy)(cos Bsin ¢)]
miws PVo+ P v+ V pepy
'Qqu - Qou - qu - qu
+(g sing)(cosy stnfcos ¢ +siny sin ¢)
-(g cos§ sing){(siny sindcos¢ -cosy 8in @)
-u(cos 0, cos ¢, }{cos 6 cos $}]
IL - pI,, - I, + (Q R, +QrsRoarar)(i,,-I,,)
=(P,Q,+ P 0+ Qp+pQ)I,,

iM o ('1I”«(Po|v.a PoreRpypr)(Iy - 1;,)

IR,

S(R2+2R,r + ) I, v (P34 2P p e DI,
IN = rl,, =Dl +(PQy + Poa v QoD ¢+ pa)(I,, = Iyy)
‘(Qu"‘c ¢ Qor + Ruq * qr)Ixz
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z& 2z
t X

Y cos 8 cos ¢

Figure 11-13, Vector Representation of
Instan - wous Angular VYclocities
and the Rates of Change of

the Eulerion Axes
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ASSUMPTION V. The diaturbances from the steady
flizht condition are assumed to be small enough so that
the products and squares of the changes In veloclties are
nepligible In comparison with the changes themselves.
Also, the disturbance angles are assumed to be small
enough so that the sines of these anples may be set equal
{o the angles and the cosines sel equal to one. Products
of these angles are also approximately zero and can be
neglected, And, since the disturbances are small, the
change In alr density encountered by the airplane during
any disturbance can be considered zero.

Thus, terms similar to qr and sin ¢ siu ¢ may be set
equal to zero, and (11-40) then reduce to:

(11-41)

IR =mlb + Qo¥, + WG+ QoW ~RgV, - Rov - Vor

+e& sing - (g cos§sin¢)y+ (8 cos §eos ¢) 6]
TPy =m(VeUR, +U,r e Rou =P W, =P w~Wp

- (g 8in )y~ g cos §sin ¢~ (g cos geus gl
TR =miwe PV, P v e VoD -Q U, ~Qu-Uyq

¢ (g sin 6,0 + (& cos R8in ) ¢~(& cos §Cos )]
EL=ply~Flyg¢ (QoRo * Qo + Roq) (Tzz = Tyy)

_(poqu‘Poq*Qop)lxz
SMeQlyy + (B Ry + By Ty RoD) (Tag = Tzg)

- (RE+MgP)Lyg ¢ (BF 4 2% W]y,
EN =T, -~ DIy, (B Q +Poas Qo Ty, 1,40

+ (QRy + Qur +Re@) Ty

Assumption V not only limits the applicability of (11-41)
to what are called small perturbations, but reduces
(11-41) to linear equations and yields a simplification of
the mathematical methods necessary for the analysis of
complicated airplane motions. In the rigorous math-
ematical sense, (II-41) are applicable only to infinitesi-
mal disturbances; however, experience has shown that
quite accurate results can be obtained by applying these
equations to disturbances of finite, non-zero magnitude .
An additional result of the assumption of small per-
turbations is the reduction of equations (I~37) which are
repeated here for reference:

(11-42) )
Pad-istn 6
Q= cos ¢+ 5In ¢ cos 6
Rey Cos ¢aCus /-0 8in ¢
These equatiuns reduce to:

(-43)
P ==y
Q- e L;;fn

Rey~0¢
and, neglecting the products of perturbations, to;

(11-44)

3
-

Equations (I1-44) show that within the limits of amall
perturbation theory, the instantaneous angular veloci-
ties may be set equal to the rates of change of the
Eulerian angles.

PO

Equations (II-41) are more complete than generally re-
quired for a particular analysis. They can be used, for
example, to describe the motions of an alrplane that
is disturbed from a complicated steady flight condltion
of steady state rolling, pitching, and yawing veloctties
as well as of constant sideslip and forward speed. For
the purposes of this volume, however, the following |
assumption is made;:

ASSUMPTION VI. During the steady flight condition,
the airplane is assumed to be flying with wings Tevel
and with all components of velocity zero except U, and

!L .

(Vo =P, =Q, =Ry =, =y = 0)

An alrplane in steady flight with only U, and W as ve-
locity components is flying along a stralight flight path at
constant linear velocity and zero angular velocity. The
airplane may be {lying horizontally or it may be climbing
or diving. This behavior is, of course, unaccelerated
flight, and therefore corresponds to equilibrium flight
as previously defined (see Section 11-4).

By eliminating the quantities assumed zero in Assump-
tion VI, equations (I1-41) may be rewritten as:

IF, =m{l+W,q+8 sln6,+ gécos §]

I, =m{¥ + Uor -W,p - gy 51n 0o~ g ¢ cOS 4l
IF, =u{W-U,a+8 6 8in 6, ~8 cos 6]
SL=plyg-Tig,

SM=ql,y

IN=¥1,z 01y,

(11-45)

Assumption VI restricts (11-45) to an airplane whose
flight condition 1s disturbed only slightly from equilib-
rium flight with U, and W, as the only component veloci-
ties. This i8 no great restriction because most air-
planes are flown in such an equilibrium {light condition
over 90% of the time, Muchof the necessary design
information can be obtained by investigating the dynamic
response of an airplane to small disturbances from this
equilibrium condition. The equations can be altered to
apply to an alrptane disturbed from a steady turn or
from other steudy flight conditions by following the pro-
cedure used in the derivation of (II-45).

SECTION 8§ -~ EXPANSION OF THE AERODYNAMIC FORCES AND MOMENTS

The uerodynumic forces acting on an airplane in flight
are the forces exerted by the surrounding atmosphere
in reststing the mation of the aleplane, Thewe forces are
present at all times during flight and, of course, vary
with the flight conditions,  Since deflection of the contrul
surfaces chanyges the flight condition, aerudynamic

1-12

forces are therefore functions of control surface de-
flection.

The acrodynan.... forces and momenty acting on an air-
plane at any nstant during its flight are shown in Figure
Ii-14:




2)
"'small =
relocq- 3 \V —,
of the 3 N ";—_
IR
Iy re-
d, for 3 ‘
e that ' Pigure I1-14, P
?:30“ Aerodynamic Forces
szs- Acting on Airplane g
wing in Flight Yz
_ Jor convenience, aerodynamic forces along the individual
don f Bulerian axes are designated by the capital letters x, Y,
eve Fand 2 to associate them with the axes along which they
an,

=nd k act, and the maments are denoted as L, M , and N about
f the 1, vy, and z axes respectively,

" It can be shown by dimensional analysis* that the forces

 acting on solids moving through fluids can be expressed
. in the form:

 (-40)

ve-
1 at
The

FeC, % oVi8
Cp = A dimensionless coefficient

p »Density of fluid

¥V =Velocity of the solid relative to the fluid
: § «Characteristic area of the solid

& Bince a moment is the product of a force by a moment
L. arm, the expression for a moment could be written in a
. form similar to that of (II-46); the moments and forces
; acting on an airplane in flight may then be written as:

! (0-41)

L« C %ov?8
D= Cohov?s
X»CK%ov?8
Y CyhoV 38
Z- CzyxpV 5
L= Ci%oV38b
M » C %oV38c
N+ C %oV *8b

ed
rht

Lift

Drag

Aerodynamic Force Along x Axig
Aerodynamic Force Alang ¥ Axis
Aerodynamic Force Along & Axis
‘Rolling Moment

Pitching Moment

Yawing Moment

where

8 « Wing Area

o = Mean Aerodynamic Chord = The wing chord which
has the average characteristics of all chords in the
wing.

b = Wing span

(Bee Figure II-18.)

Two new quantities are introduced in (II-47); they are
given in the first two relations which are the squations
of lift, L, and drag, D, respectively, The !ift is the

¢ Millikan, C. B., ‘Aerodynamics of the Airplane) John
¥iley aand Sons, Inc., New York, 1841,
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Bhaded Area =8

Figure 1I-15 B, b, and o of Wing

force acting normal to the flight path (i.e., to the rel-
ative wind), and the drag is the force acting parallel to
the flight path (see Figure II-18). TheX , Y, and 2
forces are actually functions of the ]ift and drag.

Relative
¥Wind

Figure II-16, Lift and Drag Acting on an Airplane

The other quantities appearing in (11-47) have been pre-
viously defined.

In general, each of the dimensionless coefficients of
(11-47) varies with each of the variables in (II-40) and
thelr derivatives. (More will be said about this variation
in subsequent sections of this chapter.} To avoid con-
fusion, it should be noted that the dimensionless coef-
ficlent in the 1!t equation is written with a capital L,
while a lower cuse ! is used in the rolling moment
coefficient,

n-18
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Each of the forces (X, Y, and 2} and the moments (L,
¥, andN } can be expressed as a function of the variables
by expanding the forces In a Taylor series. These
series have the form;

Fo(py, ef X E: (95
Fr, é<aa)ua 4 (3/)°ﬁ + > OY +
whera o, 5, and y are variables, and the subscript

wero indicates the quantities are evaluated at the steady
flight condition,

(11-48)

In (11-48), terms of the order (ﬁ%) 22 andall higher
da /21

order terms have been omitted in accordance with As-
sumption V.

Before proceeding with the actual expansion of (11-48),
a simplification can be made. Because the xz plane is a
plane of symmetry, the rate of change of the X and Z
forces and of the moment M, with respect to the dis-
turbance velocitlies p, r , and v, is indentically zero,
That this is true may be seen by considering the rate of
change of the X force with respect to the side velocity
v; that s, (3X/93v).

From (I1-48), the increment of force along the x axis
caused by the aisturbance velocity v, can be written In

the form:
X - X v
v

Examine the X force caused by a side velocity v. If,
for the purposes of this discussion, the airplane is as-
sumed to have a side velocity to the right (1.e., if v i8
positive), a positive X force {s produced as shown in
Figure 1I-17. If, in addition, this force 1s assumed
proportional to the magnitude of v , a plot of X versus
v might then appear as in Figure 11-18.

(11-49)

Because the xz plane is a plane of symmetry, the X force
produced by a side velocity v has the same magnitude
and direction regardless of whether v 1s positive or
negative. Consequently, for negative values of v, the
curve of X versus v is a mirror image of Figure 1I-18.
The complete curve of X versus v might then appear as
in Flgure II-19.

It was stated that the zero subscript of quantities similar
to (3X/9v), means that this quantity should be evaluated
at the steady flight condition. Assumption VI stated that
V.= 0 during the gteady flight condition. Figure II-19
shows that the slope of X versus v at (v=0) is zero,
Thusg, becauge the xz plane {8 a plane of symmetry,
(0x/9v). {s identically equal to zero, It should be noted
that this conclusion does not depend on whether the X
force produced by a side velocity v was positive or nega-
tive. It can be shown by similar analysis that if the
steady flight condition is chosen when P=veR=Qa0, X ,
Z, and M are functions of only u, w ,. and 4 and their
derivatives, whereas v, ., and N are functions of only
v,p , and r and thelr derivatives.

This brings to light an important consideration. If,
instead of specifying steady s .ate flight with zero side-

I1-14

Figure 1X-17, Force Caused by Side Velocity

0 \'A —**

Figure 1I-18. Force Caused by Positive Side Velocity

slip velocity, one were to specify steady state flight
with sideslip velocity V_, then there would be an X com-
ponent of force caused by this velocity, The preceding
analysis proved only that the slope of this force with
respect to v was zero when v « 0 during the steady flight
condition, From Figure II-19 it can be seen that (3X/3v),
{8 equal to zaro at V, - 0 and only then. Therefore, the
magnitude of (3X/?V), and similar derivatives must be
investigated if the equilibrium condition is chosen when
velocities other than y, and W, exist.

For the steady flight condition of Assumption VI, forces

and moments acting on a disturbed airplane can be ex-
pressed in one form of (II-48) as:

!

Figure II1-19. Force Caused by Side Velocity
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{U-560) Each of the terms in (II-50) has a physical significance;
XK X, & ax oA X ,Y ,and 2 , andiL_,M_, and N_ are the forces and
KXo vgmuts au Pl aq Gegowesm W FT bg moments acting along and about the x, y , and z axes
X ~,x X ax ax respectively while the airplane is he steady flight
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WHERE: 3 = Angle of deflection of elevator
5y = Angle of deflection of dive brakes
8p = Angle aof deflection of flaps
8, » Angle of deflection of ailerons
5p = Angle of deflection of rudder

SECTION 8 - EXPANSION OF THE THRUST FORCE

In this section, the thrust effects are introduced into
the equations of motion. (The influence of thrust on the
aerodynamic forces and moments due to such phenomena
as the change in flow pattern over the horizontal tail
caused by the jet blast will be discussed qualitatively in
Chapter IV.)

For the present analysis, the thrust is considered a
function of: 1) the power plant revolutions per minute,
2) the forward speed of the airplane, and 3) the altitude.
With a power plant arrangement as shown in Figure
I1-20, the thrust contributes to the x and Z forces and
to the moment ¥ .

By setting the steady flight thrust equal to T, the equa-
tions for the steady flight condition become:,

(Ii-51) X,« T, cos ¢
o= -T, sin ¢
Mu - To -

J

Since the Eulerian axes remain fixed with reference to
the airplane during a dislurbance, the thrust components
relative to disturbed axes become:

¢ = angle between x axis and thrust line

#, = perpendicular distance trom C.G. to thrust line

Figure I11-20. i (11-52) X:T cos ¢
Z«-T, sin ¢
MaT, Z,

n-15




Chapter II
Section 10

where T, (the thrust during the disturbance)s T_ « AT

The alr density remains constant during the small dis-
turbances under consideration, and AT can be determined
to a good degree of approximation by considering it de-
pendent only upon the change in forward speed and upon
the change in power plant rpm. Thus:

(11-53)
LT

’ab RPN

sre 2y
au RPM

and

partial derivative 3/

I1-54
( ) X=T_  cos ¢ +(cos 5)23 u +(coa ﬂ%ﬁ LI
RPM

. 3T 1
2=-T, 8in ¢ «(8ln §)au3u ~(sin é)asnia"
9T T
MeT z,+2, = U+z, == d;.y
°otf "7 98,0

The thrust force due to change in power plant rpm |
actually an input force similar to a control surface de

flection and would arise from a throttle deflection. Sine:

there would be a time lag between the throttle deflectior
and the resulting change in rpm of the power plant, th¢
analysis {8 somewhat simplified by considering ths
Jrather than 37/38 n o ¢

SECTION 10 - COMPLETE EQUATIONS OF MOTION

Now that the individual contributions to the equations of
motion have been examined in some small detall, the
complete equations of motion of the airframe can be
written. The equations for the steady flight condition can
be found by substituting the steady flight values of the
aerodynamic and thrust forces and moments into (1I-45)
and setting the disturbance terms equal to zero:

(11-565) X, -Wsin 8, +T, cos £ - 0
Yo+ 0 + 0 « Q
Z,+¥Wcos 6, -T, s8ln € = O
Lo+ 0 + 1} = 0
Mg+ 0 + Tyzy = 0
N « 1] + 0 = 0

Q

The equations of motion for the disturbed airplane are
found by substituting the disturbed values of the forces
and moments, (I1-50) and (11-54), into (I1-45);

(11-58)

m(l'l'WQ#g 6 ws§) a.f‘l&u.al{,
L9X 9X . aX * aX 5 X 3 aX -
B

X X
;qqaqqaw"'a R SRTEE 3,

+-O_g; bp e 2 .—— 55 Tbr’a,lsa'o(cosz):—u‘(ws:)—-b".

'ay,'al Y. Y, GY: Ay oY,  oY: a¥s
AT LTI sk é“'aan KA s wl

miw~ Uq»gGsinﬂ‘—bc&aul)-'i]o~U¢ uo-—q'gzq
i
iﬁwﬁléw o——ébc»,-db '—-ﬂb'ﬂb'§7$¢ 5'3 5
aw g SO dob obg 8
'@lnf)-—-b“pu

~f3.éba|—’1‘ sin ¢ 1~6,m ¢
LT

; -1 o) 9 ]
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i, mu“[’i] V'TV 'd_l:r ”_T bD* 5

AN ..
B 1.3 .
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The quantities in the boxes disappear because of the
steady flight condltions of (II-55). Dtviding the force
equations by the mass m and the moment equations by
the appropriate moments of inertia ylelds terms of the
form:

l-a-xu and .—L.?l".r
m 3u I or

Replacing 3- % by x, and —L :—*L by v, simplifies the

ll
notation. These quantities are called either "dimen-
sional stabllity derivatives' or simply"stability de-
rivatives." By eliminating those terms whose sum, in
accordance with equations (11-565), is zero because of the
steady flight conditions, and by using the previous
shorthand notation, (I1-56) are reduced to the form:

(11-57)

NWeW,q e gl cos Gy = XU+ Xyl + X@ v XgqQ ¢ XgW + XyW
oXSEZE*XBESB'X‘S'ESE¢X,P8F+X3P5P'X,'850Xgnsl
~x,8 +cos € Tuecos €T, 5”,

\HUr W0~ ey 8in g, -g¢cos€ “Y reYiteXyv
PV ¥ YR e Xpp e Xy By Yj SAng 5,\.!, Sy Yy, ‘N
'YSRBR

w-U.q+gd sin 6, -Zu'Z‘,u'qu'Zaa'Z W ZyW
*Zy B ¢ 2y b+ 2y 55.2, Sy, S,.z, by v 2l by
oy s -(sm £)T,u -(sin E)T msn,,,,
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SECTION 11 - UNSTEADY FLOW

In the classical derivation of the equations of motion of
an airplane, it is assumed that the aerodynamic forces
and moments acting on the.airplane are dependent only
on the velocities of the airplane relatlve to the air mass.
This assumption implies that these forces acting on an
airplane at any instant during accelerated flight are the
same ag those that would be acting on the airplane if it
were in steady flight with the velocities prevailing at that
instart. In other words, if an airplane were to change
its orientation suddenly with respect to its flight path,
<he flow around the airplane would instantaneously change
to a steady state flow pattern without any transition
period. This sort of flow is called quasi-steady flow
and is used to simplify the problems.

The resultant force on an airpiane is also dependent on
the rate of change of the velocities, A so-called "ap-
parent mass effect" arises from the fact that the airplane
must accelerate a finite mass of air when the airplane
itself is in accelerated motion. Even after the airplane
returns to steady flight, it is possible that local flow
disturbances caused by the accelerated motion of the
alrplane previous to its return to steady flight may be
close enough to the airplane to produce forces on it.
That is to say, the forces acting on an airplane at any
instant are also dependent upon the history of the motion .
In the light in these facts, quasi-steady theory does not
truly represent the forces acting on an airframe in ac-
celerated motion,

Until recently, motions of an airplane predicted by the
use of quasi-steady theory were in satisfactory agree-
ment with flight test data. However, the behavior of
some modern high speed jet airplanes has exhibited
marked discrepancies between the predicted damping apd
the observed flight test damping of high frequency oscll-
latory modes. These discrepancies increase with in-
creasing Mach number; as a result, the development of
equations to account for unsteady {low effects must
necessarily be based on compressible flow theory.
Several excellent papers have recently appeared treating
non-steady flow, but ag yet, research on the subject is
still in the developmental stages. For the rest of this
volume, flow is assumed to be quasi-steady.

ASSUMPTION ViI. The flow is assumed to be quasi-
steady,

Because of Assumption VII, all derivatives with respect
to the rates of change of velocities are omitted with the
exception of those with respect to w, which are retained
to account for the effect on the horizontal tail of the
downwush from the wing. This effcet is explained later
on the basis of purely quasi-steady consideratlons,

Downwash can be briefly described as follows: A wing
producing lift on an airplane in flight has a greater re-
gultant pressure acting on the lower surface than on the
upper. Because of this pressure differential, air from
the battom surface (high pressure aea) fiows around the
wing tips to the upper suriace (low pressure area) as
shown by the arrows in Figure 1I-21. As the airplane

Relative

proceeds along its flight path it leaves two trails of air
in circular motion. These air masaes are referred to
as "tip vortices" and are shown in Figure II-22.

Figure I1I-21. Flow Around Wing Tips
from High to Low Pressure Ares

Figure I1-22. Airplane with Tip Vortices

Figure [I-22 shows that these vortices produce a down-
ward flow of air at the horizontal tail. The velocity
‘with which this air flows around the wing tip has been
shown to be proportional to the angle of attack of the
wing.

The angle of attack is defined as the angle between the
wing chord line and the relative wind vector as shown
in Figure []-23.

wind
Airfoil Chord Line

a = Angle of Attack

Fig 11-23. Wing Angle of Attack

11-17
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it a wing moving through an air mass with an angle of
attack a and a steady forward velocity U, is suddenly
given a vertical veloclity w without changing the forward
velocity, the angle of attack changes as shown in Figure
11-24:

t‘ﬁ Relative

Wind

Figure JI-24, Change in Angle of Attack Due
to Vertical Velocity

The changes in angle of attack are proportional to the
vertical velocity w. From Figure II-24 the following
relations may be derived:

tan Aa » Ef"_; conslderingAa to be small;
V]
ANa 5 ¥

o

Since downwash is a downward flow of air, it effectively
reduces the angle of attack of the tall.

If it ts assumed that the wing tip vortices change abruptly
with dlsturbances in wing angle of attack {quasi-steady
flow) the effect of such a disturbance will not be apparent
at the tail until the ta!l reaches the position in the air
mass held by the wing at the time of the disturbance ,
That 1s, there will exist a time lag between the cause
and effect of downwash.

Figure II-25 shows an airplane at two Instants along its
flight path.

Time t,;

Time t,

1, =Distunce from wing ta horizontal teil

Figure II-25. Airplane at Two Instantas
During Flight

At the time t;. the airplune has a downward veloclty w,
that 1s different from the downward velocity w, of the
alrplane at time ;. The angle of attuck of the wmg hay
chonged; consequently, the downwash at the wing has
changed. The atrplane will travel the distance 1, in Iy

0

11-18

seconds. If the difference between t, and t,, sayAt,
equal to_& the tail at time ¢, will occupy the posit:

occupied by the wing at tlme ¢,

For small intervals of time, the expression for w; m
be written as:

(11-68) W, = w, + -g-!‘ At

t

Slnce - t is numerically small;
o

(11-50) Wy = w, + =¥

The downwash at the tail is proportional to the dowr
wash at the wing which i{s proportional to the angle |
attack of the wing. The angle of attack of the wing, .
turn, is proportional to the vertical velocity of the wing
Thus, (II-60) may be written:

(11-60) (DW) . » kw - Downwash at the tail due

downwash from wing

Since equation (II-80) shows that the downwash at tt
tail is proportional to the vertlcal velocity of the air
plane, the change of the value of the downwash at th
tail is then proportional to the change of vertical velocit

The change of vertical velocity, aw, which can be obtaine
from (II-59), may be written:

AW = wy-w L 4w U

(11-81) . v o
[v]

The change of downwash at the tail due to the wing is the
equal to kdw

4dv . Change of downwash at tail

(11-62) (ADW) -k Kb
U, dt  due to downwash from wing

This change in downwash produces a change in the angl
of attack of the tail which in turn causes a change in th
resultant aerodynamic force which acts on the tail an
which is proportional to ¥, the rate of change of th
vertical velocity of the airplane, Thus it may be see
that aerodynamic partial derivatives with respect to
can be included in the equations of motion on the basi
of purely quasi-steady considerations.
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SECTION 12 - CHOICE OF AXIS SYSTEM

The only restrictions thus far imposed on the orientation
of the Eulerian axes with respect to the airplane are that
the y axis be a principal axis and that the origin be located
at the center of gravity of the airplane, When the x axis
is oriented so that it is a principal axis, the Eulerian
axes are referred to as principal axes, but when the
x axis is so oriented in the airplane during the steady
flight condition that it is parallel to the relative wind,
the Eulerian axes are referred to as stability axes.
It is important to remember that the stability axes are
oriented with the x axis parallel to the relative wind
during the steady flight condition. When the airframe
Is disturbed {rom the steady flight condition, the Euler-
lan axes rotate with the airframe and do not change
direction with respect to the airplane, consequently,
the disturbed x axis may or may not be parallel to the
relative wind while the airplane is {n the disturbed flight
condition (see Figure II-26).

Steady Flight Condition

fixed with respect to the airplane. If the instrument
axes are aligned with principal airplane axes, flight
test data yield stability derivatives with respect to
principal axes,

The use of stability axes eliminates the terms contalning
W, from (I1-57), but now the product of inertia, I,,, i8
different from zero, and the moments and the product
of fnertia vary with the equilibrium flight condition as
well as with the airplane weight loading. Wind tunnel test
results are measured in terms of lift and drag forces.
which are measured perpendicular and parallel to the
relative wind and which are logically referred to stability
axes, Stablility derivatives calculated from subsontc
flow theory are also calculated with reference to stability
axes.

_The various methods of obtaining stability derivatives

@
C.G.

Relative
U
UO
y W ¥ing

Disturbed Flight Condition

Figure I1-26. Direction of Stability Axes with Respect to the Relative Wind
During the Steady Flight and Disturbed Flight Conditions

Several factors must be considered in determining which
axis system is more suitable for a given analysis,

If the equations of motton are writlen in terms of motion
along the principal axes, these equations are somewhat
simplified because the product of inertla, 1, is tden-
tically zero. In addition, the moments of inertia in a
principal axis system of an airplane are not dependent
upon the steady flight condition. On the other hand, the
location of the principal axes is a function of the dis-
tribution of the airplane's mass and consequently varies
according to the loading. In general, the principal «x
axis very nearly coincides with the longitudinal fuselage
reference line which, in most cases, is only slightly
different from the wing chord line (see Figure 11-27).

In calculating stability derivati/es for supersonic flight,
it is convenient to orient the x axis along the wing chord
line. When the disturbance {s small, the pressure
difference between the upper and lower wing surfaces is
determined from the general Bernoulli equation, and the
stability derivatives are determined from integrations of
the forces and moments over the wing. Since the wing
churd line is only slightly displaced from the principal
axis In this cade, it 18 convenient to use principal axes .

Flight test data are generally measured by instruments

are discussed in a later section of this volume., The
important points to be noted here are that stability de-
rivatives are referred either to principal axes or to
stability axes, according to the method of derivation,
and that the equations of motion can easily be altered
Lo apply to either axis system. Throughout the remain-
der of thls volume, the stability axis system is used
since stability derivatives are most commonly obtalned
with respect to this system. It should be emphasized,
however, that the equations of motion Jiffer only slightly

~ \[Wing Chord Line

Fuseluge Reference
Line

Longitudinul Principal
Axis

Figure I1I-27.
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when referenced to either axis system and that the math-
ematical techniques employed in their solution are

{dentical.

SECTION 13 ~ EQUATIONS OF MOTION REFERRED TO STABILITY AXES

The equations of motion referred to stability axes with
the fiow considered to be quasi-steady can be obtained
from (1I-57) by elim!nating the following quantities:

1. All terms containing ¥,, which disappears because of
the direction of the stability axes.

2. All aerodynamic partial derivatives with respect to
rates of change of velocities except those with respect
to w.

3. All aerodynamic partlal derivatives with respect to
rates of change of control surface deflections.

Equatlons (II-57) then reduce to (1I-63) and (II-64),
{11-83) \.g0cws 4, - T, (s HHu+ Tsupua*“’“ s €
*XU+ X Qe X W X+ xs'EsE RIS A
W-U q+gfsing «-T (sin Su- Ty, p Onpu S0 €
LAY qu AL Z‘-'\i + ZSESE + Zstp + ZSBBB
=20
Ly
¢ M My du M5 Bp + M; dg

u Puf’npu *MU ¢ MyQ e My

uv’—‘a--l-r-n-T5
I" R

(11-64) V.U r-gysin 6,-gpcosf =Y re¥y
¢ YD+ YIABA + Yalsu

b- ;—:-f Bel rel,velypoly 3,0y 8,

t- Tag DeNreNVeNp+ N,As‘ + N."zsl
2z
An examination of these equations shows that ([1-83)
are functions of the variables u, 6, and w, whereas
(11-64) are functions of the variables v, r, and p. Thus,
as a result of the assumptions made (n the previous
analysis, the equations of motion can be treated as two
independent sets of three equations. Equations (II-63)
are referred to as the longitudinal or symmetrical equa-
tions because, when these motions occur, the plane
of symmetry of the alrplane remains in the plane it
occupled in the steady flight condition. Equatlons (II-64)
are referred to as the lateral or asymmetrical equations.

Since the longitudinal motions are independent of the
lateral motions, they are treated separately in the rest
of this volume.

SECTION 14 — DESCRIPTION OF THE DIMENSIONAL STABILITY DERIVATIVES

The adoption of Assumption VII has greatly reduced the
number of stability derivatives appearing {n the equations
of motion. In this section, each of the dimensional
stability derivatives in (I11-63) and (II-84) Is first given
a brief physical interpretation, then expanded into a
more basic form, and shown to be a function of what are
called '""basic non-dimensional stability derivatives,"
(A detailed discusslion of these basic non-dimensional
stability derivatives is given In Chapter V.) The longi-
tudinal stabllity derlvatives, which appear in the equa-
tions of motion given In (II-63), are treated first,and
the lateral stabllity derivatives, which appear {n ([[-64),
are treated later. Equations (11-47), used In the dis-
cusglon, are repeated here for reference:

(11-85)

L-C 3oV Z-C, 5 oViS

D-Cy 3wV LeCpypoVish

3 SH | 20 I |
XeC, 3oVl M- CpdopVise

Y.l LoV N=C, ) oVish

It should be noted that the quantity V%, which appears
in (I1-65), is the square of the total linear velocity. In
the stabillty axis systermn, the total Hnear velocity during
the steady flight condition is equal to U,, which Is the
velocity in the direction of the x axls. When dlsturbed

from steady flight, the ajrplane can have velocity com-

11-20
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ponents U +u,v , and w directed along the x, y and z
axes respectively. During disturbed {light, the magni-
tude of the total linear velocity, can be expressed as:

(11-68) V] = {qug +wy e vZew?

or

(11-87) V] - (U3 2u,u +utevi sy

In Assumption V,u, v, and w were assumed to be very
small so that their products and squares could be neg-
lected. Thus:

(11-68) ViUt 2 0.u

o

Also, since U? s very much greater than2u,u, a very
good approximation can be given In:

(11-69) IVl sy, v U

Therefore, the magnitude of the total linear velocity
Vat any Instit is approximately equal to the x com-
ponent of lincar velocity, U, at that instant. Since
U-y, « u, the magnitude of V at any instant is approxi-
mately equal also to the linear velocity during the steady



jflight condition, U,. Thus V, U,, and U can be used
ksomewhat interchangeably,

LONGITUDINAL STABILITY DERIVATIVES

k Ecfect of u, The Change in Forward Speed

g

Upru
E Relative
. Wind

[ 2

Figure I1-28, Variation of Lift,
Drag and Pitching Noment
with Change in Forward Velocity

I As an airplane increases its forward speed, the lift, L,
b drag, D, and moment, M, change. Generally, but not
always, each of these quantities increases.

Since drag acts along the negative X axis, an increase
in drag contributes a negative X force. The change in
X force due to a change in forward speed can be ex-
pressed mathematically in the form:

II'?O A .P_X --_a.—g‘
{ ) Xe i au»u

(11-71) X, * 1l 3x..1 3D
m du m 3du

Using the drag equation from (I1-85), equation (II-71)
can be written as:

(m-72) x, .-L 2D..1 a(jpUBC )
‘" m 3u b u

When the indicated differentiation is performed, (I-73)
ylelds;

C
- .- 2830, ]
(-73)  x, 2m[” 5206

and

@14 x, .- 28004 2D, c)

Since lift acts along the negative z axis, an increase in
11ft due to a change in forward speed contributes a nega-
tive Z force:

. e 272y .2
(11-75) A2 5% u S u
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(11-76)
-1 %_Z --1 %_L
By noting the stmuarlty between (11-76) and (1I-71) and

between the lift and drag equations of (II- £8),equation
(11-77) can be written immediately:

@M .. £5U [% %g,, Cu]

The change in moment caused by a change in forward
speed can be expressed as:

(11-78) AM -« My
du

oL 2N
(11-99) u, i 3

The same mechanics used in the expansion of X, can be
used to derive M,:

- .PBUc |y 2Ca
(1-80)  w, - 8L [2 20 c,]

The equation for thrust can be written in a form similar
to that of the lift and drag equations in (11-85):

(11-81) Te - pUSC

The change in thrust due to a change in forward speed
is:

(m-82) AT» 'a" u

According to the mechanics used in the expansion of X,
the stability derivative T, can be written as:

[ v

Some new symbols are now defined. The quantity c
18 equal by definition to y 3C,
2 30’

(-83) 7, . e8U

du 'l
Similarly,
u 3C;.
(11-85) = B_JL CLu
3C

- 1L "o,
(11-88) 7 3% Co,

- u 3 CI
(1r-87) 2 3u Tu

In Figure II-29, the quantities L, and D, represent the
lift and drag acting on the airplane during the steady

{light condition.
normal and parallel to the relative wind.

u-21

‘~he lift and drag always act respectively
According
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Effect of v, The Change in Speed Along the 2z Axis

Relative
wind
z

Figure II-29.

to the deflnition of stabllity axes, the relative wind dur-
ing the steady flight condltion {s parallel to the xaxis,
Therefore the only component of linear veloclty during
the steady flight condition I1s U, Thus, L, and D, are
respectively perpendicular and parallel to the x axis.
When the atrplane ls disturbed from steady flight so that
it has a component of velocity along the z axis, w, as
well as a forward velocity, U,, the relative wind shifts to
a new position as shown in Figure [1-28, This shift re-
sultsin anincrease in angle of attack denoted by the angle
A e, The quantities L and D, {n Figure 1I-29, represent
the 1ift and drag acting on the airplane during the dis-
turbed flight condition, and they act normal and parallel
to the relative wind. The relative wind acts {n the direc-
tion upposite to the vector which represents the sum
of G, and w.

The c hange in X and Z forces caused by ¥, the change in
speed along the z axis, can be found by resolving L and
D along the x and z axes:

- 2% . L%
(11-88) = &Lmét "
welU, tan Aa ¥ UyAo
(11-89)

3% . 0X
é_é- ktlrm"'lg _UtAa

From Figure 1-29,

(11-90) AX+ L 8in ba- D cosba- (-D,)

L and D can be written as:
L»Ly+ 8L
DvD,+ AD

{11-91)

Since, according to Assumption V, disturbances from
steady flight-are considered small, AL, 6D, and Aa are
small, By setting sinda » Aa and cos 4a«], and using
(11-81), equation (II-90) can be rewrltten as;

(11-92) X e (L, *ALY A -(D,+AD)sD,
Neglecting products of small quantities,

(11-93) AX e Lba-4D

11-22

Substituting (11-83) Into (11-88) yields:

1 LAa-AD

- 3 x » —
(11-94) e klam_t 0o 3

And in the limit:

- . .3
(ar-05) 2 (i-(u 20
Also

. 13X . 2D
(-98)  x,-L 32X a—[}:(b n)

Substitution of the values of 1ift and drag from (I1-685)
into (11-98) ylelds:

- . 0.2 (L 2
aLem  x, “.‘%0[12. pBUC,- 2 (2 PBU c,,)]
w-88)  x,-28¥(c -c, )
where Co,= 250

da

The change in the Z force due to w can be found by re-
solving the forces in Figure II-28 aJong the z axis and
performing operations similar to those used in the der-
ivation of (I1-98):

.. P80
(11'99) Z' —2;“— (Cbﬂ - 0[9

The change in moment due to w I8 most easily visuallzed
by observing the components of the total 1ift and drag that
act on the wing and the horlzontal tail, Figure II-30
shows these components,

Figure I1-30. Lift and Drag Acting on the Wing
and the Norizontal Tail

The subscripts ¥ and T refer to wing and tail, A vertical
velocity, w, causes a change In angle of attack of both
the wing and the horizontal tail and consequently changes
the 1ift and drag acting on these lifting surfaces. ‘The
resulting moment can be found by summing the moments
caused by each of these forces about the center of grav-
ity. It may e seen that this moment 18 dependent upon
the location of the center of gravity with respect to the
wing. The moment equation from (11-65) 18 rewritten:



-100) M-l ov?sec,

49

SN Y
1 ow 2 o
fabstituting w - yAa in (II-101) ylelds:

L eUse 1 3G .M
v 2 0 3e Sinco My = 7~ 3w

p-102) 4, -&0Cc,  vhere G, pon
K yy

Moct of ¥, the Rate of Change of Speed along the z Axis

-

ALy

Ve«
}.

Figure 11-31.

) the discussion of unsteady flow (Section II-10), the
itstence of a force due to ¥ was explained on the basis
Bquasi-steady flow considerations. It was pointed out
at this rate of change of speed along the axis results
h an effective change of the angle of attack of the hori-

ntal tall, This change in angle of attack causes changes
j the lift and drag acting on the horizontal tail, These
pe incremental forces and are represented by AL, and
D, in Figure II-31,

fhe change In drag on the horizontal tail is the main
pntributor to the change in the X force. Because the
frag on the horizontal tail is generally small in com-
Jarison with that on the total airplane, this force is not
onsldered, Therefore, X, is considered zero in the
drst approximation, However, the change in lift onthe
Jorizontal tail causes a change both in the z force and
I the moment. The lift on the horizontal tail acts in
Re negatlve z direction, and therefore:

B1103)  Az- 224 .-y
; ow ow

3L . esYl vy, PBY Xy

bit1-104
) I w 2 ow 2 A&

{ince W U

E8inco 2, » 1 24

7. « -PBUOC,
4 2m da

? (|1-105 )
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To form a non-dimensional coefficient, (1I-105) is mul-
tiplied and divided by i% .

... P
(II-108) z, _5%1 gﬁ

3.Cl
%)
(I1-107) zi--—f’;ﬁﬁﬁcbt where C, - 373-;%

M, can be expressed as:

- M
(I1-108) A M aw"

- M . ASYc 2Ca
(1-109) 55 2 2w

1 2y
AU e ¥
(I1-110)

PSec?
M, » 28c? ¢
i 4Iyy b

Effect of q, the Pitching Velocity

Figure 1I-32,

In the light of tho quasl-steady flow assumption (Assump-
tion VII) the major effect of the airplane's pitching about
its center of gravity is to cause an increase in the angle
of attack of the horizontal tail, As inthe case of the
effect of #, the resulting drag increase is neglected in
the first approximation and X, is set equal to zero.

The incremental lift produces a change both in the Z
force and in pltching moment. The expressions for z,
and M, can be derived as follows:

- 4« 2hg. 2L
(M-111) a7« 2Lq-- 2L q

psy? ¢ 3C,

20 3 (gg)

(11-112) L. 2sy? 9.
3

q 2 9q 2

VA ._L _71.
qQ m q
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(11-113) ..PSUg . o€
Zq am Cl‘q where Cl‘q é-—(—Lgbc-)

and

- . oM

(11-114) &M W q

(1-115) 2M . e8U% 2% eyl o 3G
2q 2 3g 2 2v 3(19)

20

Mo -1 3M
@ Iyy 94

(I1-1186) M . 28Uc? C, where C " 38

Etfects of 835y , the Change of Power Plant Revolutions
per Minute

W}z
Figure 11-33,

An increase in power plant revolutions per minute ylelds
an Increase in thrust. By using equatjon (II-81), the
increment of thrust can be expressed as:

(I1-117) a7 'a_asL 5

RPM
RPM
AT 1 3_9Cr
- - - pBU
(1-118) 35 - 3 T

To form a non-dimensional coefficlent, (11-118) {5 mul-
tiplied and divided by -9-2%% where the coefficlent 60 is
used to convert U from feet per second to feet per

m inute,

3 . L 9T
Since T‘npn m d3py

a-119) 71, . 30 C"m

where C . —

11-24

Effect of 5., the Elevator Deflection

Yz
Figure 11-34.

Deflecting the elevator up is defined as the posil
direction of elevator deflection, as shown in Fig
11-34. The most important effect of an elevator defl
tion is to produce a change in lift which acts on the ha
zontal tail and which causes a pitching moment. It
be seen from Figure II-34 that a positive elevator (
flection decreases the effective angle of attack of
horizontal tail thus causing a positive Z force an
positive moment M. The increment of Z force can
expressed as:

11-120 - 925 . 2L
( ) ez asgsﬂ asESE

(I1-121) AL . L pu%s 9Cy,
35, 2 35,
Zg = 1 H
E m 35,
("-122) 1 _&U’S AC
Zss s a CLSE where CLS: - g-si'

The increment of moment has a similar form:

1I-123 » 9
( ) aw —H—BSE 5

11-124 oM . 1 ,y2 3Gy
( ) 35, 2 p USc —;

Mg = 1 oM.

E I” a8,

11-125
(1-125)

- LUZ_S_Q her - 9Ce
8g 21,, C'sE where C.sli 3o,

The change in the X force due to elevator deflection |
caused by the change in drag. Thus:

- .9 - 9D
(1I1-128)  ax a’?‘ 5 by

E 38
(1-127) 2D, Lpuss 3G
98¢ 2 d8g
X, ol 909X
85 m 35E
(11-128) )
X o=- euzs C, where C, - 26
i 2m $g bg 05
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C..' where C."- g-g-:- ‘

flect of 5,, the Flap Deflection (I1-137) o
; N - 5

2
* I!.Y

 x
\ Effect of 8& the Dive Brake Deflection

Yz

Figure 11-36.

Dive brakes are generally designed to produce only a
Figure 1I-35. drag force as shown in Figure [[-36, Assuming that a

dive brake deflection also produces some small amount
3 of 1ift and moment, the expressions for the stability
Flaps down" s defined as the positive direction of flap derivatives have a form similar to those related to flap
pflection as shown in Figure II-35. This flap deflection deflection and can be written immedlately as:
jereases the effective angle of attack of a section of the

ing thus Increasing the lift and drag acting on this sec- (11-138) X, =- puls Cp where Cp = %92
jon of the wing. The increase in drag produces a nega- 8 2m ’s iy 9%

ve X force. 1
4 11-139

: ( ) Z, =~ LAlLH] <, where C, = %—95 t
fhe incremental X force can be expressed as: *a 2o hay 1y ©bs

41-120) AX - %" bp = - 535—'0 by (11-140) M, = PUE S C where Cn, = 2Ca

3 4 [ 4 L —im “58 ||58 WH

; P L ax r LATERAL STABILITY DERIVATIVES

X, = 2a

Fooom 95 Effect of v , the Change in Side Veloclty

11-131) ‘

X‘ - M CD where CD - EEE 5
! r 2m ’p 'p [ &p §
{The incremental z force is: /‘/ﬁ :
: - i
11-132) C 225 .21 *
H az. ks, 3 b [ P, ‘
—

(-133)  2L. . L 25 2%
- a8, 2 35,

N

-1 2z
‘ %% @ 2 bp
:(11-134)

T 20,
Z‘r‘ m C’“s,,. where C'“sp . ”378:
b The moment produced by a flap deflection 18 dependent
on the location of the ¢.g. with respect to the wing, The

* expression for the Incremental moment is:

Dihedral Angle
F4

(1-138)  ou- 24, ; -
‘; . AM_ . L ,y2u. 9Ca
(-136) 3 - & putse T i
W - 1. OM |
by 1 B

~
~
~

Figure II1-37.

i-25
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When an airplane is disturbed from steady flight so that
it has a side velocity, v, a force along the y axis and
moments about the x and z axes are developed. The
major forces caused by the side velocity are labeled F,,
F,, Fy, and F, in Figure II-37. F, arises from the
cixange of the angle of attack of the vertical tail, F,ls
the side force acting on the fuselage, and F; and F, are
forces acting on each semi-span of the wing, due to the
effective dihedral of the wing. From (II-65), the slde
force equation may be seen to have the form:

2
v-Louise,

The change in side force due to a change in side velocity,
v, can be found by differentiation:

Y
(11-141) bY = 52V

(11-142) Y . L,y

(11-143) y, - L 2X . oU3s3Cy

Fram Figure I-37, it may be seen that the angle of side-
slip, g, is related to the sideslip velocity, v:

(11-144) tan 8 « l-JY_

o

Since v has been assumed to be a small quantity

(I-145) -
UO

and

(11-146) v . U,pB

Substituting (I1-148) in (1I-143) yields:

(11-147) y. . AUl _3Cy
2m U

\d uaﬁ
(11-148) v . PUS¢c  where 2Cr.c
2m '8 3B Yp

The raolling moment about the x axis is caused mainly
by ¥',, which acts above the x axis, and by the com-
ponents of Fyand ¥¢ which act normal to the wing. The
equation for 1, , from (II-85), is rewritten:

2
L - ‘}2— pUE LT,

The change In 1. due to a slde veloclty, v, can be ex-
pressed as:

I1-26

J<

(11-149)

(1-150) 3k« 4 puisp S

(11-161)
L. .2U8h ac
v 21I,, 09V
Substituting the value of v from (11-146) Into (II-151)
ylelds:

- . elsh - 201
(11-162) w, 2L €y where Y
Also, since v e y,8

L, = d- Ly end L,V =L

o

(The quantity L, is used later in the chapter.)

The yawing moment due to a side velocity, v, 18 caused
mainly by the force on the vertical tail, F,. The form
of the stability derivative N, is similar to (II-152):

(11-153) N, » 2USb ¢,
2 IZZ #
also . N, - T)];— Ng

Effect of p, the Change in Rolling Velocity

A rolling velocity, p, causes a force to act on the verti-
caltail, This force is illustrated as F, in Figure I11-38,
The change in the Y force due to p i{s expressed as:

(I-154) Ay~ 3L p
3p
(11-155) Y . Puls_ 3G,

9p 2 9p

(11-158) Y, . ﬁ

/ot

Y . pu3s 9Cy
p 2m 9p

To form a non-dimensional coefficient, (II-158) 18 mul-
tiplied and divided by BD[] Thus:

(11-167) Y, - fush ¢ where C, = L

dm Yp 3 (P}_))

2u

There are also incremental forces acting on the wing.
These forces are illustrated as F; and Fyg in Figure
11-38. The . tical veelocity of the downgoing wing at
any station a wistance 1 from the xz plane, is ply -
This vertical velocity increases the effective angle of
attack at this station by an amount A a (where 60, % Py ).

u,
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]

Acl
ot J.._.¥Ypl

Relative Wi nd
Down-Going Wing

ghis increase in angle of attack increases the lift and
firag acting on the wing., The effective angle of attack
M the upgoing wing at a station a distance !; from the
-1z plane is decreased by an amount Az, (where
Aa, pt,/U, ). This decrease in effective angle of at-

jack decreases the lift and drag acting on the wing at
jbls station

F Usually the change in drag force is relatively small
 and Is neglected for the purposes of this discussion.
"In the preceding discussion, it is stated that the lift
- on the downgoing wing {s increased and the lift on the
upgoing wing is decreased resulting in a change in the
E rolling moment, L. The change in rolling moment due to
. P is expressed:

F (11 . AL

(-158)  AL- $Lp

F (11-159) AL . L ,pisp G
: 9p 2 ap

| (-160) 1, - L 2L
I, 2p

al

Multiplying and dividing (II-159) by
the result into (II-160) yteld:

LD - &U.S.D_z. Cl where C‘ - _a_C
41,, )

U’ and substituting

(1-161)

In addition to the change In magnitude of the lift forces
acting on each semi-span of the wing, it may be seen
from Figure II-38 that the lift forces acting on the down-
going and upgoing semi-gpans are rotated forward and
backward respectively. The change in direction of these
forces results in a negative yawing moment about the
2 axis.

Figure II-38 represents the ge.ieral case. However, for
flight near the stall, the drag forces may become im-
portant and result in a yawing moment of opposite sign .
The change in yawing moment due to P is expressed as:

(11-162) AN -g" P

By noting the simllarity between (11-162) and (11-168)
and between the equations for L and N in (II-85), equa-

Figure II-38.

Relative Wind
Up-toing Wing

tion (II-163) can be written immediately:

- . PUsH? h . 9Cn_
(11-188) N, rE C,, where Cp 3(-%%)

Effect of r, the Change in Yawing Velocity

< A

Figure II-39.

A side force, F,, I8 caused by a yawing velocity, r,
which is mainly due to the fact that the effective angle
of attack of the vertical tail is increased. This side
force is generally positive and can be expressed as:

(11-164) AY = éi r
ar

By analogy with Y, derived in equation (II457), it is
possible to write:

11-165 . eush . _9Cy
( ) Y, 4 C,r where C,r . (Lll)
2U

As shown In Figure II-39, the forward speed of a station
which is a distance !, from the xz plane on the semi-
span of the wing is decr eased an amount 1;r, resulting
in a decrease in lift at this section. Similarly, the
forward speed of a station a distance !, normal to the
X2 plane on the semi-span of the wing is increased an
amount l,r resulting in an increase in lift at this sec-
tion. The resvii of the changes in lift acting on each
semi-span {8 thon a moment about the x axis. This
moment ig usually positive and can be expressed as;

11-27
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(I1-186) .. . 2L
ar

By analogy with L, derived in equation (HI-{61), equation
(:I-167) can be immediately written:

(11-187 L . £2USBI . 2C
) r e C;, ~ where C, ;(‘—Lé}
20

The side force F, in Figure II-39 also causes a moment
about the z axis since the vertical tail is some distance
aft of the center of gravity. This moment is usually
negative and can be expressed as;

(11-168) ANs 2N ¢
or

(11-169) 3N . 2U2Sb 3Ca
ar 2 ar

@

(11-170) N = Lo N

T, 9r

(%)

Multiplying and dividing (II-189) by £~ and substituting
this result in (11-170) yield: e

(11-171)

.LUSh? ¢ where C, = 3Cn
r 41, " r 3/rb
2U

Effect of 3;, the Rudder Deflection

X

Figure I1-40,

A positive rudder deflection causes a force to act in the
positive ¥ directton as {llustrated by ¥, in Figure I1-40.
The rudder deflection changes the effective angle of
attack of the vertical tail, which in turn produces a force
proportional to this change in angle of attack.

(11-172) ny - 2X g
3, R

(-173) oy | 1 um %
Py 2 by
since

Y NSNS &

°K m 9

In-20

- 2
(11-174) Y, - pb%s . where €. = 2Cy
R 2m 1, e 38,

By referring to Figure 11-40 again, it can be seen that
F, causes a negative moment, N, about the z axis,

(11-175)  aN - 2N 5,

2%,
(11-176) 2N . 2ulsb 3C;

SR 2 38l
Since N, - 1 23N

R T,, 36g
m-177) N, - 2USpe here €, - —la
( ) W T Tor,, My, T Tt 3w,

Depending on whether the center of pressure, that is, the
point at which F, can be considered to act, is above or
below the x axls, a positive rudder deflection can cause
elther a positive or a negative rolling moment AL, This
increment of ralling mament can be expressed asfollows:

(11-178) AL = 2L g

m-179) 3L .

o

pub L& since 1, L 2L
a8, R ] 38,

[+ %)
o

(11-180) L, -f—lﬁs—b—cl where C, .20
R 2 1,, ba bg asn

Effect of 5, , the Alleron Deflection

Figure I1-41.

Positive aileron deflection is defined as the upward]
deflection of the aileron on the semi-span of the wing
lying along the positlve ¥ axis and the downward de-
flection of the other alleron as shown in Figure II-41,
The aileron which {s deflected up decreases the effective
angle of attack of a section of the wing and generally]|
causes a decrease in llft and drag acting on that scetion
of the wing, whercas the aileron which is deflected down
usually causes a corresponding increase in the lift and
drag acting on that section of the wing.

The changes .n iift produce u positive rolling moment,
A1, This chuange is rolling moment can be expresscd as:



a1-181) 4. . 245,
A

. L= ~ylsp 20
(1-182) 3L - 28R o

- A 3L

Since by "1,
P 13sb 9¢C,
(11-183) L; - c where C, =_—=
A 21,, ', 5a 5a

The change in drag generally produces a negative yaw-
ing moment about the z axis, The increment of yawing
moment can be written as:

- - ON
(11-184) AN 53, 5,

- N . 2U3sh ¥y
(11-185) a5, 5 33,
Since N.A - I_L %‘:—

>

3c
. PU3SD « 25
(I-188) N = ST~ Co,, where  Cn, 33,

There is generally no side force due to aileron deflec-
tion, but i{f one did exist, it could be expressed as:

(11-187) a8y - 2Xs,
28,

(1-188) .2Y . pU% 2, S8ince Y, -1 2L
8y 2 2%, A b 335,

-&zi C where C .0C

(0-189) Y, 2m 4 re tn, 35,

The longitudinal and lateral stability derivatives dis-
cussed above are tabulated in (I1-180) and (I1-191) re-
spectively. All of the dimensionless coefficients of
the form Cnp, Cay,, etc., in (II-180) and (II-191) are
referred to as basic non-dimensional stability deriva-
tives.

Chapter II
Section 15

Longitudinal Stability Derivatives

(11-190)
2
M «2USCS o
x“.&%§(-cbu-cn) 4T, "
U £ . T, -302USC
Z, 'A'm“s‘ (-C - G ‘pu m C"'s".
X, - -RUS
M“'&Iu;?g(c‘u'c') : 2m C"u:
Z, - PU2S
T, .&%S (Ce, *+Cp) % 2m CLIR
.PUS - .Putsg
X, = C, -C M C
e (€L -Cp,) g 2T,, M,
z,-ﬂl—s -C, - Cp) X, - LUlS o
P 2m ip
M'.E.U_ﬁﬂ Ca 7 .PU%sc
2L,y " e 20 Ls,
«a T VTDC
zZ, = - 28¢ Cy, Map 21, C‘ap
4m
U%s
) X, »-&U8 ¢
I ﬁc_ C ., 55 2 m D‘B
Pyis
~ Z, - PI
X = 0 LEY 2 m CLAB
7 = -2USC ¢ My = pp? 5
[ ]
4m q B 21” iy
Lateral Stability Derivatives
11-191 2
( ) Y, - Lm_s.c Lr..p_glib_clr
xx
USb S b2
Ly -ﬁ N'.A‘IU——I Ca
Iyx ‘ zz r
Ly« UgLs, v, --£2US ¢,
& 2m [
N.« £USDb ¢
v 2 Izz ﬂl9 L ﬁ_ﬂ._l_) C
(PR Iy
N‘-U N, 2xx R
. PUS N, = £L8Dk ¢,
Y 4m ST Cy Yp w2 0, i
. PUSD? . PUS
Lp 41,y € Y’A 2m C’SA
.AUsz L, LUisb
Np 41zz C"D i 21,, "A
Y- %LSQ C N, . PUSDH c,
n T A 21 zz 'A

SECTION 15 - TRANSFER FUNCTIONS

In this section, (II-683) and (I1-84) are converted by the
use of determinants into the transfer functions con-
sidered in the rest of this volume. Some preliminary
discussion of the quantities involved in these equations
is given first. Although most of these quantities have
been defined in the preceding text, they are redefined
here for the sake of clarity. The longitudinal quantities
are treated first.

The angle of attack, e , is defined as the angle between
the wing chord line and the relative wind. It is equal to
the sum of the steady fiight ungle of attack, ¢_, and the
perturbation angle of attack, da; a=a,+Qa,

o

The angle between the flight path and the horizontal is

defined as the flight path angle ¥ and is equal to 7, ¢4y
(the sum of the steady flight angle 7, and the perturba-

tion angle Ay). In the stability axis system, y, IS equal
to the angle between the x axis and the horizontnl, when
the airplane is in the steady flight condition.

The pitch angle, 8, is also composed of a steudy flight
value, 8,, and a perturbation value, 6. 1t is the angle
between the wing ci ord line and the horizontal: g« 8,0

In the derivation of the expressions for the components
of gravity acting along the disturbed Lulerian axes In
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Section II-5, the angle between the horizontal and the
Eulerian x axis in the steady flight position was defined
as 6,

At that point in the derivation of the equations of motion,

the orientation of the Eulerian X axis with respect to
both the airplane and the relative wind was arbitrary .

Horizontal

If the Eulerian x axis had been aligned parallel to tho
wing chord line, the definitions of 8, given In Sectio
1I-5 and immediately above would have been consistent,
However, the substitution of ¥, for 8, in the equation
of motion should not lead to any difficulty if stability
axes are used as reference axes and the above definitions
are used.

All Angles Pictured Are Positive

Fidure I1-42. Airframe in Equilibrium Condition

It was not until Assumption VI was made that stability
axes were selected as the reference axes. In the sta-
bility axis system, the x axis in the steady flight position
is parallel to the relative wind, Therefore, when sta-
bility axes are used as reference axes, the angle called
8, In previous sections is equal to ¥, according to the
definitions given above.

Horizontal

The components of velocity along the x and z axes are
U and W respectively, and each is composed of steady
flight and perturbation values defined as: U<y +u
and W= W +w, However, according to Assumption VI,
¥, 18 equal to zero; therefore: W =0 and Wew

The steady flight values of the above variables and the

Figure II-43. Aicframs in Distucbed Condition
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lel to the Perturbed Wing Chord Line
:s!Setcuon Equilibrium Wing Chord Line
8 k
Equatfg:\; ~ Perturbed Eulerian Axis
stability | Equilibrium Eulerian Axis
Relatlve Wing
Horizontal
Wind
ve
perturbed Relat!
Perturbed Eulerien Axis
Equilibrium Eulerian Axis
PITCH ANGLE: 6's Horizontal to Wing Chord Line
1 ANGLE OF ATTACK: a's Relative Wind to Wing Chord Line
1 FLIGHT PATH ANGLE: y's Horizontal to Relative Wind
I et 2 Z
Rl N o
Total Perturbed Quantities minus Equilibrium Quantiti'es give
magnitude of Perturbations:
8-6,-0
A-ajea Figure I11-44
T-y,~v
are _ x and z axes during the steady flight condition are shown From Figure II-44, it can be seen that the flight path
ady [ in Figure [I-42, The subscript o is used to denote axes angle ¥ is equal to the pitch angle, 8, minus the angle
" : during the steady flight condition, of attack «:
vI,

By recalling that once the axes are fixed to the airframe
during the steady flight condition they remain fixed with
the | respect to the airframe during any particular analysis,

' the airframe in a disturbed condition and the disturbed
x and z axes would appear as in Figure I1-43. It should
be noted that the relative wind does not necessarily lie
along the disturbed axis.

To present a complete picture of the longitudinal angles ,
it 18 necessary to superimpose Figire II-42 on Figure
-43, as in Figure II-44,with the fuselage reference
line and the airframe outline omitted.

Eulerian x Axis ~ Wing Chord Line
Uelyeu s

a

Direction of Flight

Figure 11-45.

(n-192) Y = 9 - Q&
The change In angle of attack, Aa, can be expressed as
a function of the component velocities.

From Figure [1-45, the following relation can be derived:

tha-_!_-_‘!_
U Ug+u

Since both w and u are small:

tan Ao X ¥ Aq  and
UO

The lateral angles are shown in Figure II-46. The angle
of yaw, ¥, Is the angle between the steady flight x, axis
and the disturbed x axis and is positive as shown. The
angle of stdesllp, B, is the angle between the flight path
and the disturbed x axis and is related to the lateral
velocities by:

WU A

tan 8~ X . ¥

U U,+u
By noting in the figures the correspondence between 8
and the perturbation angle of attack, 4 a, it may be con-
cluded that:

BT X
U\)

The roll angle, ¢, is of course not shown, but is defined
a# the rotation about the disturbed x axis. The angle
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3 \ Flight Path
During Steady
‘ Flight Condition —\

e bl z

v [z
Y
y
Instantaneous
pirection of )
» pisturbed Flight X
v Path Disturbed

/ Axis
Yy

Figure II-46.

E 18 defined as the angle between the equilibrium flight The variable, 8, is substituted for v in (II-194) usin

path and the disturbed flight path. the relation 4, y. Thus:
o

It should be pointed out that only when E {8 equal to zero m"“)
is the sidelip angle A, equal to the negative of the yaw UoB-Y, U8~ Ypp"“(‘ms 7‘*’ +Ugr- Yrr"“(’“" 7¥
angle (Bee Figure II-47). Y, 5,+Y, 85,

A R
The equations of motion are now used to derive the I
transfer functions. (II-63) and (I1-64) are rewritten = LgBeD~Lyp- I—'l Febor =L, §5,¢L 5,
below with y, Substituted for ¢,: 1z A .
(11-193)

I .
- Nﬁ’a' I_'z D~ Nppq t- N.r = N.ASA' N'ISI
- X, u-(T, coshn - X @+ g 6coBYy- XyW-X W i

=Xy bg Xy Spt Ty dapycost +Xg_ 4
£ B RPN 5¢ °F Dividing the first equation of (II-196) by U, yields:

-2,u o(Tu sin f)u-uoq ~2,a g 08iny, ¢ W- ZoWw- 2w (11-196)
. - - Y 8- YD -[£(cos +r-Yir-[-& (sin
Zy be %y By (T,".sln 5)8,,,. $ 2, by B-YB-Yyp (Uo( 743@ ‘ (Un Yol#
. L] . Y
« Y 5 5 -l )
M- %ﬂ T o G- Mqa- Wy - Myw Y,A At Y'n R where Y 9, otc
' £ (I1-198) can therefore be written as:
. M.Iﬁl + H‘nBl + I T.IPIB'P' +M‘5F Sp s ] . .
Yy - - - ) - -
(1-104) V8- Y0 u°(° : 7‘)" ProYr uo("m 7ol
. Y, 5,+Y; b
V=Y, V- Yop- gfoos yph Upr- Y, r- g(sin y)ge ¥, 5, ¥, 8, T h At e
; A R (11-197) .
-L.veD-Lp-:3 F-Lr=L, 5,+L, & Lyt - -3 bl - 5 5
v O v LA R PR | T AR T I,, el Ll‘ A'Ll. a
- Lz gl r- - . T .
Nyv i P-~NpeF-NT N;‘5A * N.“5n NS - i—;; P-Nper-Nr - N'AS‘ . Nl.sn
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Figure II-47.

he right sides of (1I-193) and (II-197) are the cantrol

Yforces and represent the means by which either the
Ehuman pilot or an autopilot can control the motion of
ithe alrframe. The motlon ia also Influgnced by rough
galr (such as gusts), but this is not a phenomenon which
i the pilot can control; he can only try to avoid flying
i through such rough alr Once he is in rough air, the
wpllot has only the controls mentioned above to control
to any degree the motion resulting from disturbances .

.The thrust and the control surface inputs are the forcing
functions which determine the resultant motion of the
jairframe. Since the airframe equations of motion are
inear equations, the principle of superposition may be
used to obtain a solution. For Instance, the response to
paimultaneous application of elevator and dive brake
f deflections can be determned by calculating the response
! to each of these deflections separately and then adding
!ogelher the results to arrive at the complete solution,

' In this volume only the longitudinal response to elevator
" deflection and the lateral response to rudder and aileron
ky deflection are given detalled analysis. It should be
} emphasized however, that the mathematical techniques of
t molution for the other control {nputs are identical,

£ The Laplace transform method* of solution is used
E throughout this volume. Equations (11-183) and (11-187)
. transformed, become;

L ¢ Gurdner, M.F., and Barnes, J.L.,'Translents in
ll,luear Bystems,’ John Wiley and Bons, New York,
942,

(11-198)
(8- (X, ¢+ A')Ju(8)=(8Xy ¢ X )w(B)=(8X - g c08Y,) O (8)
* Xy Bp(8) ¢ X Bg(8) ¢ B'Bypy(8) ¢ X Sp(e)
“(Z,-CHyu(s) o (8(1-Z,)-2Z,Jw(8)-(8(Uy+2 )-8 8in%)0(8)
~ 7y By(B) ¢ Z; 5p(8)-D'3ypy(8) ¢ Zy Bp(m)

=(My +E)u(s)-(8My + M )W(8)+ (83~ M 8) 6 (8)
- M,IS.(s) + M'lsa(s) *F' Sy py(8) ¢ I,'J,(s)

Y
- ~(s-Re K .k
(8-Yg) B(8)- (570 + 3 008 we(8) . [s(1 &) iR siny,ly(e)

o (Y, 5008 ¢ ylusl(s)]d'
]

~LpB(8) + (83 - 8L,)¢(8)~ (A 87 + 8L, )¥(8)
. L,ABA(s) + L,us‘(s)

“N,8(8)- (B;8+ 8N, )¢(8) + (8% - 8N, )y(8)
- N|‘5‘(9) * Nlusui(')
where
A’ Ty cos £
B'» Toypy €08 ¢
C'«Ty 8in ¢
D’ -T.n“ s8in ¢

E —J-—T
Iyy
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The longitudinal transfer functions written in deter-
minant form for the response to elevator deflection
(8 « 8, = §,p, = 0) ArE:

(11-199)

X3 - (8Xy+Xy) -(8Xy-8 cos %)

Z,l [8(1-24)-2,) -[8(U,+Z)-g8in %)
uisy M - (BMyeM,) (83-Me8) | N,
by(8) 0,

(8- (X,+A)] - (8Xg4X,)
“(2,-C')  (8(1-2)-2))  ~[8(Uy+Zg)~g 81n %)
- (M, 'E") - (8M ¢M,) (83-M,8)

= (8Xg=8 COBY,)

D, is the determinant of the homogeneous equations and
i8 expanded In (11-200).

(11-200) D, =As*+Ba®+Ca%+D8+E

where A=1-2,
Ba-(1-2)[(X, + A*) M) -Z4-My (U, + Z0)-X4 (2, - C")
Co (X, 0A") (Mg (1-2;) ¢ Z, oMy (Ug +Z0) )My B ) (X, (U 9Z )
XL ZD M Z+ (Z,-C) [M X=X )= X M, ]
+Me 8 810 v, -M, (U, + Zp)
Degaln o (M, +E)X oM =M, (X, +A' )] +g coB %, [(Z,-C" )N,
+(MeB") (1-2,) 1+ (M oE )X (U +2.) +2,X ]
$(Zy=C Y X M- XMy o (X, 0 A" (M, (U +24)-Mo 2, ]
E=g cos v, (M, (Z,~-C')-2,(M,+E")]
+8 8310 ¥ [ (M, +E ) X~ (X, +A'IM,]
The numerator determinant N, {s expanded in (II-201):

(11-201) N,=AB8Y+B,824CB+D,
where A, X, (1-Z;)+24 X,
B, =-X, E[(I-Zi)MQOZ'OMi(UOOZq)]

02y IX My X Mo X, )
My DX (UgeZg) o ¢ 1-2.)%]

c, - x,gmuz,.u,g siny,-M, (U, +Z))

+Z, E[XQM'-M‘-,g coB 7,-XM,]

OM,E[-X",g 8N 7, +X, (UgeZo)=(1-2Z,)8 cos 7,-Z,X ).

D, = X,E(M'g sin yn)-Z,r(M'g co8 7,)
‘M,E(Z'g cos y,~X,8 8in y.)

Stmillarly,
(11-202)
[s-(X,+A")] x.g - (BX -8 COB 7,)
-(2,-C") Z‘s -[8(Ug+Z,)-8 8in 7,]
- (M, +E) M‘: (s2-M_8)
wis) . | N
BE(S) Dl Dl
(11-203)

N, = A"s’o B,u%+Cos ¢ D,

II-34

where

Ag» Z,'

B' - X.'(Zu-Cl)oz,'[-Mq- (xutA')] QM"(UOOZQ)

C,» x.l[(U‘,'Zq) (M, +E*)=M (Z,-C")]
~Z,l(Mq(xu0A‘)-(MuoE')xq]
My (X (2,~C') =8 81N 75- (U, +Zy) (X,+A"))

D, -X.'(MuoE')(z sin 70)0Z,I(M“0E')g cos v,
vM.'[(X“oA')s ain v,- (2,-C')g coa v,)

and

(0-304), ¢ (Xg*AD] = (8XgeXy)
-(2,~C") (s(1-2,)-2,]

_8(8) |~ Mu*E") - (8MgeHy)

8p(8) D,

9{1;2'(:5) Ny = Ag8d+ Bys+ C,

Ag ™ Ty MyoMy (1-24)

By = Xy [(Zy=C")My+(1-Z;) (M +E")]
OZ.B[H.'“i(xqu') + (M“OE' )x']
’M,E[-Z,-(l-Z;) (X, +A" )X, (2,°C")]

C,- x,E(M,(Zu-c' 1-Z (M, +E"))
My {Z, (X +A")~X,(Z,-C")]

OZ.E[-M'(Xqu)OX'(MuoE' y]

It should be noted from the mechanics of the above der-
ivation that had it been desirable to derive the transfer
functions for any one of the other control inputs, it would
have been necessary only to replace &g by the appro-
priate derivative whenever 5. appeared in the above
transfer functlons. This useful knowledge can also be
applied to the lateral transfer functions about to be de-
rived, To make the following transfer functions appli-
cable to aileron deflection 3, instead of rudder deflec-
tlon 5, it 18 necessary only to replace 5; by § wher-
ever &, appears, and to replace the quantities Y,. '

L‘u . andN,'l by Y.A ,l.BA , and N,A respectively,

The lateral transfer functions for rudder deflection,
{5, = 0), can be derived as follows:




. - . £ - . o L
Y,. (“"Uo cos %) [s(I-Y) Up sin 7]
Ly, (82-8L,) - (A,8%8L,)
Mo, - (B, 8%+8Ny) (83-aN,.)

(8-Y,) -(sY;O‘-j‘;oos %) [8(1-Y})- UJ:am %]

Ly (83-8Ly) = (A8%8L))
=Ny - (B;83+aNy) (8%-8Ny)
. N(ﬁ/ll)
"o,
9 » Y Y o Y
: Note that: Y, - B similarly Y =R and Y=t
§ U, U, ru

b []
;(ll-207) D, =8(As* +Bs’ +C8?+ D8+ E)

As1- A8,
Be =Y, (1-A;B,)=L,-N,~AN -B,L,
Ce Ng(1-Yp) oL (Y, oN, )Y} (A,NgoLig)
Ny (A Yy L) +Y, (BLL+N ) LB, (1-Y})
De -N,[(l-v‘)L oL Yo 4A, 1} cos 'yoo‘f-sin Yol
N, [Lp(l YL 1-LNY,
LN Y, - Ul: cos %-Blﬁ'; sin ¥,]
E.ﬁ cos yo(l..‘Nr-'NpL,)0(-15; 8in 7, (NoL-LgNy)

(11-208) Neass, )= 8(Ag8*+Bga?+Cyn +Dg)

where
Age Yy (1-AB,)
B, -Y, (-UyNp- AN ByLy ) oLy (Y;-B, (1-Y}))
.N, (A,Y)-(1-Yp))
Coe Vs, [L NN 1oLy [-K: cos =N Y;-N,(1-Y})

+B, 1. siny,) +Ny (YoL,+A, & cos ¥, +L,(1-Y})

1y,
o-ﬂ- aln % ]
UO

D, u, U-&[-N, cos ¥, + N, 8in 7,]
[*]

‘N'I-UL [L,cos 7,-L, sin %)
o

(11-208) |(s-¥,) Y, (8(1-Yp)- K sin v,)
‘Lp L'n -(Als +sL )
5 . N, Nip (s2-8N.)
8p(8) D,
Nio/s0)
/0
DZ
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_9: D
{11 210) N(é/ll). S(A‘,l.a‘soc‘ . -;!)

where
Ay =Ly *Ny A,
By = Yy, (Ly+ANg) oLy SN ) Ny (=AY )
Cp = Yy, [-LNg LN ToLy (YN oNg(1-YD)]
m,l[-L,(l-v;)ov,,L,)
D, = (N'IL’.L'IN’)ﬁf- sin v,

(11-211) . .
(8-Y,) -(sY, ‘ﬁl cosy,) Y..
o
~Ly, (83-8L,) Ly,
¥ (s) =N, -(Bis’osz) N,'
5y(8) D,
N(W/uk)
T,
11-212
( ) Neussp) = A82Ba%Co8eD,
where

ANy oBiLy,
]
By # ¥y, (NgeB L) oLy (N,=B,Y,)oN, (=Y,-L,)

Cy = Yy, (LgMp=Nglp)ely (YoNg Y N,)
Ny (LY ,~Y L)

Dy = (Ly Ny=Ny Ly) o chos Y

The above transfer functions, which are used as the
basis of discussion in Chapter III, completely describe
the airframe within the limits of the assumptions made
in their derivation, The assumptions are repeated here
for reference.

ASSUMPTIONS,
I. The airframe is assumed to be a rigid body.

II. The earth is assumed to be fixed in space, and,
unless specifically stated otherwise, the earth's atmos-
phere is assumed to be fixed with respect to the earth,

III. The mass of the airplane {8 assumed to remain
constant for the duration of any particular dynamic
analysis,

IV. The x-z plane is assumed to be a plane of sym-
metry.

V. The disturbances from the steady flight condition are
assumed to be ~mall enough so that the products and
squares of the changes in velocities are negligible in
comparison with the changes themselves. Also, the
disturbance angles are assumed to be small enough so
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that the sfnes of these angles may be set equal to the
angles and the costnes set equal to one. Products of
these angles ara also approximately zero and can be
neglected. And, since the disturbances are small, the
change in air density encountered by the airplane during
any disturbance can be considered to be zero.

Vi. During the steady flight condition, the alrplane is
assumed to be flylng with wings level and all components
of velocity zero except U,. Since stability axes are now
used as reference axes, W, -0,

VII. The flow 1s assumed to be quasi-steady,

The maln problem asseciated with the use of these trans-
fer functions is the determination of the numerical values
of the stability derivatives. Over a period of years,
considerable experience in the application of these equa-
tions to many varied airframe configurations flying at
low subsonic speeds has been gained. For the low sub-
sonic speed range, it may be sald, in general, that there
ls good agreement between the results of theoretlcal
analyses and of experimental flight tests.

Experience in the correlation of experimental flight test

results and theoretical analyses of the dynamics of air-

planes fiying {n the transonic and supersonlic speed
ranges is definitely limited at this time. In view of this
lack of experience, no attempt is made to draw any firm
conclusions regarding the dynamic behavior of aircraft
flying at these speeds; however, some rather general
remarks can be made. The assumption of quasi-steady
flow does not appear to be very accurate for airplanes
flying at transonic speeds; consequently, unsteady flow
effects may have to be Introduced into the transfer func-
tions for the results of an analysis to have practical
value. The outlook seems to be more favorable for
purely supersonic flow. The time lags for the forces
to approach steady values appear to be of the same order
of magnitude as in subsonic flow with at least one excep-
tion, this being the lag in the damping of a wing in pitch
for the lower supersonic Mach numbers. In general, the
basic theory used in the derivation of the transfer func-
tions can be applled to an alrplane flying at elther sub-
sonic, transonic or supersonic speeds, but caution must
be used to ensure that all of the necessary stability de-
rivatives are included.




CHAPTER Ili

DISCUSSION OF TRANSFER FUNCTIONS

SECTION 1 - INTRODUCTION

pter, the transfer functions previously derived
jed with the aim of promoting an intuitive un-
hg of the aircraft motions represented by these

nctions and of showing how an analog com-
y be used in the analysis.

jments relating to transfer functions in general
nted first; the rest of the chapter is devoted
fled discussion of the longitudinal and lateral
unctions.,

pfer functions derived in Chapter Il are sim-
‘neglecting relatively unimportant terms; they
evaluated numerically for a representative
ormance jet aircraft at a typical flight condi-
is, for an airframe which has dynamic char-

acteristica similar to those occurring during most flight
conditions.

Complete three degree of {freedom responses to & control
surface deflection for the longitudinal motions are
analyzed first; then some lesser degree of freedom
solutions and approximate factors of analytical value are
determined by inspection of Bode plots and analog com-
puter solutions of the complete case., The lateral mo-
tions are treated similarly, The simplified solutions
are used to determine the relative importance of the
individual stabllity derivatives to the various modes
of motion.

Analog computer solutions are given which demonstrate
the effect of flight conditions and of individual dimen-
sional and basic non-dimensional stablility derivatives .

SECTION 2 - GENERAL DISCUSSION OF TRANSFER FUNCTIONS

Mion presents certain general information re-
jiransfer functions in preparation for the de-
lyses in the remainder of the chapter. Methods
pting the results obtained by working with the

functions are also considered at this point .

pansfer functions have already been derived in
11 and shown to be of the form N(s)/D(s), where
d D are rational polynomials in the complex
8. D(s) Is the expansion of the system deter-
i that is, the expansion of the determinant of the
gants in the homogeneous equations of motion .
ditional equality, D(s) = 0, 18 referred to as the
oristic equation of the system and is related to
gtional form of the transient motion of the air-
L The roots of this characteristic equation deter-
o functlonal form of the transient motions of the
%, For example, if Dn(s) = As* + Bs® + Cs% + D + E
b ) (B+az) (8+ ay)(8+a,) ,the time histories of
aslent motions of the craft are of the form:

Kje 1 t, K,e"‘l‘ * K.e""“ + K‘e‘ﬂnl

ithe K's depend upon both numerator and denom-
fquantities in the transfer function and where the
¥ be complex as well as pure real quantities.

Jof the o's, say «, and a,, are complex con-
o the time histories may be written in the form

Kie™®t% + Kpe'®tt o K4e”*t sin (wt + @) where a, o,
and ¢ are functions of the real and imeginary parts of
ay and a .

When the time histories are written in this way by com-
bining any complex conjugate terms, they consist of sub-
sidences (real exponentials with ¢ > o), divergences
(real exponentials with a <0), and oscillations (complex
exponentials).

Each term of these types (subsidences, divergences,
and osclllations) is referred to as a mode of the air-
craft transient motion, In the example considered,
the term K,e**1ti8 one mode; K,e"®1*, another; and
K&e""sin(wt +¢), & third.

Since the major concern of this volume is the transient
response of the airframe, much of the dlscussion is in
terms of the modes of the transient motion.

The complete solution of the system of linear differ-
ential equations which describe the motion of a dynamic
system is the sum of a steady-state and a transient
solution, provided that a steady atate exists, a condition
which occurs only {f the system is:stable. The stability
or instability of a system can be determined by applying
Routh's criteri-.. to the coefficients in the characteristic
equation, and t..v degree of stability (or instability) can
be determined by finding the roots of the characteristic
equation,
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A system is stable if, and only if, the transfer function
has no poles in the right half of the complex s-plane. If
N(s) and D(s) have no common factor, the last statement
is equivalent to saying: A system Is stable if, and only
If, the characteristic equation has no zeros in the right
half of the complex s-plane. (I N and D do have com-
mon factors, these must, of course, be cancelled out
oefore applying this second test for stability.) The
steady-state solution for a stable system corresponds to
the system response to a sinusoidal forcing funétion
after a sufficiently long time has elapsed from the ap-
plication of the sinusoid so that the transient response
has damped out to a negligibly small amount,

The frequency response, or Bode plot, is a valuable
design tool for the determination of the system transient
characteristics. It consists of two parts: one, a plot
of transfer function amplitude in decibels, and the other,
a plot of transfer fundtion phase angle, bcth plotted
against the logarithm of the frequency. The Bode plot
can be obtained from the transfer function by substituting
jw for g,

Whether the system represented by the transfer function
la stable or unstable, this substitution leads to a result
mathematically identical to the solution of the non-

homogeneous equations of motion of the system with 2

sinusoldal forcing function,

If the system is stable, the information required for

plotting a Bode chart can be obtained experimental
by exciting the physical system with a sinewave
variable frequency and measuring the responses afte
the transients have died out, For a stable system, on
one plot 1s essential, since the phase angle is a knoy
function of the amplitude. Bode diagrams can also |
obtained by reduction of transient data, but much mos
analytical work 18 required,

Results of analyses in this chapter are to be present
both as Bode charts and as functions of time by meat
of analog computer recordings. ‘

Although the Bode chart is basically a system desiy
tool, it also ylelds {information concerning transient r
sponses; this latter use is the one emphasized in th
chapter. These Bode charts of airframe transfer fun
tions glve data in a form which the control systems d
signer can readily use,

The analog computer is an especially valuable tool f¢
analyzing the dynamic response of complicated systen
because it yields large amounts of quantitative daf
quickly and easily, The analog computer traces g
plots of certain variables as functions of time. Identic
results could be obtained by taking the inverse Laplaj
transform of the transfer functions and plotting the r
suiting expressions against time, but this procedu
would require far more time and effort.

LONGITUDINAL TRANSFER FUNCTIONS

SECTION 3 - COMPLETE THREE DEGREE OF FREEDOM RESPONSE TO ELEVATOR DEFLECTION

In this section, the complete three degree of freedom
response of an airframe to an elevator deflection is
examined. As mentioned previously, the transfer func-
tions derived in Chapter Il are to be simplified before
proceeding with the analysis,

In comparison with other terms appearing in (11-168),
several terms are small in magnitude because they
contain stability derlvatives, such as Xgo Xgr Zyr Xy o

E

and T,, which are usually very small. The derivative
2, is relatively unimportant because it appears as an
addition to U, in the Z force equation of motion and is
always small in comparison with U,

ASSUMPTION VIII. 1t is assumed that;

Xyt X2 Zgm Xy *Zg=Ty=T, =0

Shpu

Perhaps the best general evidence in justification of
Assumption VIII is that the derivatives named in it rarely
appear in the technical literature concerned with air-
craft dynamics. The Inference here {s that although
individual investlgators have evaluated the effects of
these derivatives for a multitude of various airframe
configurations, they have found them to be of only sec-
ondary importance. The adoptior of Assumption VHI
does not in any way alter the methods of analysis applied
In the remainder of this chapter, but it must be re-

m-2

membered that if any of these derivatives were actus

of primary {mportance for a particular airframe, ¢
roneous quantitative data might result {rom the use{
this assumption in the analysis of that airframe.

In general, any stability derivative may be neglected
it is first determined that the term containing the glv
derivative is small in comparison with other terms in
game equations,

ASSUMPTION IX, In the steady flight condition, tH
flight path of the airplane is assumed to be horizonty
%, =0 ]

Assumption IX is introduced solely to simplify th
mechanics of the analysis. When the flight path of &
alrplane is initially inclined to the horizontal, y mu
of course be included in the transicr {inctions.

The longitudinal transfer function: « - ived in Chapter|
are simplified into the following +-vms by the use
Assumptions VII and IX: |

(Ill—l) u(g)_tj_‘_,_nushc s+ D
b (3) b, Dx
F,u : ZOEXI

et 'ZSE(“Mi + qu.‘(') 4 MSE(UcX-’ g)

by« BNy 2, M2y )



-3) w(8) Nu_ Au8 ¢ Bys? + Ce8+ Dy
\ 5e(8) D, D,

A, - zl.

B, - -z,l(u,o X,) ¢ M,'Uo

Co Xy (Zy Mg - My U,

DI b “(ziluu - “llzi)

o¢s) Ng_ AE" +Bys+ Cp
53(!) Dl Dl

Ag = Zy My s Ny
Bo = 2y (Mg - MaXy) = My (Xy * Z4)
Co* zl'(Mux- = NgXy) ¢ Ny l(xlzl - XgZ,)

D, =As* +Ba%+ Ca? + Ds

A= ]

Be-(Mg+ X, +Z, ¢+ UMy)

Ce MyZy - Ughy ¢ X"(l;l + 2y + U)X 2,

Den Xy (Mg Zy = Uy )My, X, oM K, Zy (NG 2y oM, )
E» (M2, - M Z)

\ 'or the numerical analysis in this section, the data in
FTable ITI-1 are used.

Altitude (ft) 20, 000
Weight (1bs) 30, 500
Mach Number . 838
True Airspeed (ft/seo) 660
X, -, 0007
X, +,0018
2, -, 0985
z' - 1' 4”
%, 69.8
. -.0238
M, -.0013
N, 1,820
M.' 26. 10
M, 0.0
Table III-1.

Bubstituting these data into (III-1), (II-3), (I0-8), and
(III-4) yields the following set of equations:

(u1-6)
A(B) . _,____n..u.mh_n.pn-nsn
8.(5) (a%+ 4,2108 + 18.242) (s + 0,00001s + 0. 00396)

8(8) . 26,0183 + 35,968+ 0, 3502
8y(8) (8%14.21Gs+18. 242) (82+0.000018+0. 00306)

Aa(s) . 1 _w(s), 69.85% + 1734382 + 168,45 + 80, 25
Be(8) U, 3,.(8) (8°+4.2108+18.242)(8%+0.00001a+0, 00396)

Chapter 11
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{I1-5) are not written according to the convention selected
for writing transfer functions; instead, they are to be
written in the form;

Transfer Function = K@ (8)

where K is the frequency invariant part, and a(s) the
{frequency dependent part, of the transfer function.

In the KG(s)form, (III-5) become:

(111-6)
8+l 1
;“-Ui-l- -15920 = :
e(®) (—:—oa—g sol)(? : 03,—'2501)
(‘an "p “’n.p Pap
(1m-7) . o2 ™
Aa(s)-uiim—(’ 5 0[[67(%8—)—’ 0.068 “1]
Sg(s) ¢e0f 81 oy,  \(sT " 2,
wd ' &y *Ulea ‘@, B 1)
» ) Nep sp
{111-8)
80(:)' 4.85 8 2: - 8 s 2'(1
E (5.'?_0“-,—;’;801)@?—05;:':991)
) sp
where
“a4p " 4. 27 @, ® 0.0630

{yp =0.483 [, =0.0m1%

Inspection of the roots of the characteristic equation
(commanly called the ''longitudinal stability quartic') for
these degrees of freedom shows that the characteristic
longitudinal motions consist of two oscillatory modes.
One of these is a relatively well damped high frequency
osclllation called the short period mode, and the other
is a lightly damped relatively low frequency oscillation
called the phugoid mode. Both are discussed later in
more detail.

Figures III-1, -2, and III-8 are Bode plots of (I-6),
{11I-7), and (III-8) respectively. By examining these
plots, several conclusions can be drawn concerning the
phugoid and short period modes of the transient re-
sponse of the airframe.

Figure III-1 shows that the amplitude ratio, s!IL , 18

much smaller at the natural frequency of the shortgperlod
than at that of the phugoid. This indicates that relatively
smaller changes in airspeed occur during the short
period transient mode than during the phugoid transient
oscillation.

By inspection of Figure -2 or equation (UI-T), it may
be seen that a quadratic {n the numerator of the -95—2

transfer funct’' .. very nearly cancels the denomtnato'r
quadratic which sepresents the phugoid oscillation. Con-
sequently, there is almost no change in angle of attack
during the phugoid oscillation,

In-3
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8 I1I-3 shows that the values of the amplitude ratio,
f, at the short period and the phugoid natural fre-

uencles, are more nearly equal than those of |1Ll

at the same frequencies. This implies that the ampll-
h\des of 9 occurring in the characteristic modes are
smore nearly equal than those of u, for the same inputs,
Inspection of the Bode plots shows that only relatively
psmall amplitudes of u occur in the short period mode.,
and of o in the phugoid mode, whereas larger ampli-
tudes of 6 occur in both.

b These observations indicate that good approximations to
Fthese modes can be obtained by considering that each
W them consists of only two degrees of freedom: the
¥phugoid, of u and 9 degrees of freedom, and the short
perlod of @ and §.

[ Before the approximate transfer functions are discussed,

" these cancluslons concerning the relative amplitudes are

hverified by inspection of analog computer results .

' Pigure 111-4 shows the appropriate analog computer
t traces,

¢ From this figure, it can be seen that the maximum
f‘ amplitude of u 18 very much smaller in the short period

Y The two degree of freedom approximation to the short
I period mode can be determined by setting the variation
- in forward velocity, u, equal to zero and deleting the
E {irst relation of (I1I-9), This is {n accordance with the
previous statements that u is of relatively small ampli-
} tude In the short period mode and that a suitable two de-
¢ gree of f[reedom approximation can be obtained by con-
sldering only the a(i.e.,w) and 4 relations.

(111-10) (8- Z,)w(s) - sU,6(s) = 2, ESE(S)

- (BMg + M )W(8)+ (s - Mq)se(s) - M‘ESE(S)

* Solving this system of equations leads to the transfer
. functions:

(1o-11) a(s) . 1 _w(s)
3 dp(8) U, 8.(s)
1 Zy 34 (UgMy = 23 M)

o [S5-(UMy+ 2.+ M )m(M z « UMY
(1-12)
8(s) . (M,EOZ,EM;)SO(Z,EM'- M5 oZa)
Be(8) glud (UM, + Zy + Mg)Se (M 2y - UM,)]

The common part of the denominators of these transfer
functions is of the form 43, 2(:.: 8+w?, With

(I11-13)
w, « {M,Z7 U N,

and

Chapter I
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than in the phugoid, and that the maximum amplitude of
w( ¥U,a) during the phugoid i8 very nearly zero, Fur-
ther, the maximum amplitudes of ¢ in each mode are
comparable in magnitude, All these facts are in agree-
ment with what was inferred from the Bode plots.

The characteristic response of an airplane to an im-
pulse elevator deflection can be described as follows:
When the elevator is deflected, the airplane undergoes
a rapid change in both pitch angle and angle of attack.
The angle of attack rapidly returns to approximately
its initial value; the airplane then slowly oscillates in
forward speed and pitch angle until the transient motion
disappears and the airplane resumes its initial flight

conditions.

On the basis of the analysis presented above, the equa-
tions of motion are now used to derive some approximate
transfer functions. Equations (II-198) reduced by apply-
{ng Assumptions VIII and IX and by considering only
elevator deflection, are rewritten as:

(111-9) (8- X, )u(s) - X,w(s) + gb(s8) =« 0

-Z,u(s) + (8- 2Z,)w(8) - sU H(8) = Z,Ess(s)
“Mu(8)- (sM; + M) w(s)+(s - M )8b(8) = M,ESE(s)

SECTION 4 - TWO DEGREE OF FREEDOM SHORT PERIOD MODE APPROXIMATIONS

(111-14) ~(U My +Z, + M)

- ow w :]
¢ 2 w,

Evaluating (III-11) and (IlI-12) for the numerical values
of the stability derivatives from Table III-1, and arrang-
ing the results in the K G(s) form, yield:

(I11-15)

and

(111-18)

where w".,p = 4,27 rad/sec. and [, = 0.493

Figures III-5 and III-6 are Bode plots of (III-15) and
(I11-18) respectively. The analog computer solutions of
the equations for the two degree of freedom approxima-
tion to the short period mode are shown in Figure III-7.

To check the accuracy of this two degree of freedom
approximation, three comparisons are made: first,
thenumerical values of the appropriate ratios and natural
frequencies in (111-6) and (I1I-16) are compared; second ,
the Bode charts of Figures I1-2 and [II-5, and of Figures
I1I1-3 and I0-6 12 superimposed; and third, the analog
computer traces of the two and three degree of freedom
solutions are compared.
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‘, ble -2 contains the values of [, and @u,, for both

Be two and three degree of freedom cases. It can be
gen that these values check exactly,

W

SHORT PERIOD MODE

4 w, (rad/sec)
Two Degrees of Freedom 0.493 4,27
B Three Degreas of Freedom 0.493 4,27

. Comparison of { and «, of two degree and three
- degree of freedom short period mode.

k.

TABLE I11-2,

. Figure I1I-8, the two degree of freedom Ao/8, transfer
gnction (from Flgure I1I-5) and the three degree of
eedom Ax/5 ;. transfer function (from Figure I11-2)
e plotted. Flgure I1I-8 shows the plots of the three

fa indicated in Section III-3, the quantity w, the in-
jremental veloclty In the z direction, is almost exactly
o, but u and 8 undergo relatively large variations in
implitude during the phugold motion.

’ ese facts suggest that an approximation to the phugoid
Bay be obtained by setting w« 0 in ({[I-8); the result of
ping this is:

(8- X,)u(s)+gd(s) =0

1-17)
; -Z,u(8) - SUGB(s) = 25 Bg(»)

-Myu(s) ¢ s(s- M, )8(s) = M,ESE(S)

¢ three equations in two unknowns have no solution
n general, it is necessary to eliminate one equation of
IN1-17); this can be done on the basis of physical rea-
pning.

In general, the stability derivative M, is extremely small
Bnd Is therefore usually assumed to be zero as it has
heen for the generic aircraft which provides the numeri-
®al values used in the present discussion. Further, the
phugoid motion of an aircraft is so slow that the inertia
Jorces acting during it can be assumed negligible. I
Poth these assumptions are used, the last relation of
HIII-17) becomes:

(Ill-lﬂ) “BNO(5) « My B ()

JIf this last retation is combined with etther of the first
two of (I1[-17), the characterisiic equations of these two
japproximdte systems cannot have complex roots; that iy,
fthe systems represented by these palrs of equations can-
knot osclllate.  To obtatn an oscillidory solution, 1t is
ktherefore necessary to use the first two equations of
LM-17):
(1[!-19) (b= XOU(s)+u0(s) 0

‘ =L u(s) - KU B(8) = Z’»-;b"‘(ﬁ’

’“
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degree of freedom (from Figure [I-3) and two degree of
freedom (from Figure I11-6) 8/, transfer functions.In
both cases, it can be seen that there is very good agree-
ment in both phase and amplitude ratio in the vicinity of
the short period natural frequency.

As a {inal check, the two and three degree of freedom
solutions of the equations of motion from the analog com-
puter are superimposed in Figure III-10, which shows
that there Is excellent agreement between them,

In summary, the two degree of freedom solution of the
pitching moment and vertical force equations of motion
is a very good approximation to the short period mode .
For a typical flight condition, the short period mode can
be considered to consist of changes only in angle of
attack and in angle of pitch; the short period motion
occurs before there is any appreciable change in forward
speed,

SECTION 5 - TWO DEGREE OF FREEDOM PHUGOID MODE APPROXIMATIONS

The resulting transfer functions are of the form:

(111-20) . s | Z'E g
dg(s) U, (Sg* X,s - ﬂg)
UD
and
(111-21)

8 (s) .-(s-)(u)Z,J1
5.(s z
£{8) U‘,(S2 -X, 5 —Uu—%)

0
and hence the natural frequency and damping ratio of
the approximation to the phugoid are o - J-zug/Uo
P

and [ »-X,/2, respectlvely.
P
By substituting the appropriite numerical values from

Table III-1 into (11I-20) and (Ii1-21) and arranging the
results in the KG(s) farm, the transfer functions become:

(I11-22) _
T  p— -
Sp(s) T
P N L ]
p »
and o 1)
(111-23) ;'iﬁ_l - 0.220 —— (0.(;097
= R
L (%) <\ AT s,l>
u ~ m"
N »
w, = 0.0683
where !

L, < 0.0710

Figures HI-11 and 1-12 are the Bode plots of (111-22)
and (111-23), respectively. The analog eomputer solu-
tions of the equations for the two degree of freedom ap-
proximation to the phugoid mode ave shown in Flgure
HI-13.

The accuracy of the two degee of freedom approximation
to the phupoid mode can be checked in the same manner

fl-11
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E"tlve
iforce downward because of the relatively small Z’z

pa the short period approximation was checked in the
Peceding section, Table III-3 shows that there is rea-
onably good agreement between values of {, and of

' Ior both the two and three degree of freedom cases,

i PHUGOID MODE

: { w, (rad/sec)

0.0683

Two Degrees of Freedom 0.0710
# Three Degrees of Freedom 0.0714

0. 0630

Comparison of { and w, of Two Degree and Three
Degree of Freedom Phugoid Mode.

TABLE III-3,

Pigure I11-14 shows the two degree of freedom u/s
firansfer function (from Figure II-11) and the similar
Bthree degree of freedom transter function (from Figure
in. 1), The plots of the three and two degree of freedom
§6/8, transfer functions are shown in Figure II-15 (from
’l'lgures 1II-3 and IMI-12 respectively).

Flgures II1-14 and I1I-16 indicate that both the u/5zand
4 0/5 two degree of freedom approximate phugoid transfer
nctions are of smaller amplitude than the equivalent
three degree of freedom functions, and are shifted 1800
i in phase with respect to them, These differences can be
ijexplained by considering how the elevator deflection
contributes to the motion.

the three degree of freedom case, a positive elevator
i deflection causes the airplane to pitch in the positive
k. direction (nose up) because of the relatively large posi-
M'z and produces at the same time a small vertical

i The result of the pitching moment is an increase in pitch
 .angle in phase with the elevator deflection, and the result
F of the vertical force is a small downward velocity pro-
1 .ducing a small positive increase in angle of attack also in

Chapter I
Section b

phase with the elevator deflection, 8Since the lift in-
creases in direct proportion to the angle of attack, these
changes cause the airplane to ¢limb with Increasing
pitch, As the pitch angle increases, the component of
the force of gravity along the negative x axis increases,
causing the airplane to decelerate. Therefore, the
change in forward speed 18 out of phase with the elevator
deflection,

In the two degree of freedom case, the change in angle
of attack is set equal to zero. 8ince only the equations of
the forces in the x and z directions are used in this two
degree of freedom approximation, an elevator deflection
is assumed to produce only the downward force due to
Z,E. For the angle of attack to remain zero, the airplane

must pitch in the negative direction (nose down). This
increases the component of the force of gravity along
the positive x axis, andthe airplane therefore accel-
erates. Thus, In the two degree of freedom case, the
change in forward speed is in phase with the elevator
deflection, whereas the change in pitch angle is out of
phase with it. If the phases of both the 6/5; and u/§;
approximate transfer function plots are shuted by 180°
they agree reasonably well, in the vicinity of the phugold
frequency, with the plot of the three degree of freedom
transfer function.

Figure III- 18 shows the analog computer solutions of the
two and three degree of freedom equations superim-
posed. In each case, the two degree of freedom solu-
tions have a smaller amplitude and a 1800 phase shift
compared to the three degree of freedom solutions,
whereas the frequencies are in relatively good agree-
ment,

In summary, it appears that the two degree of freedom
approximation to the short period mode is in good agree -
ment with the complete three degree of freedom short
period mode, whereas the two degree of freedom ap-
proximation to the phugoid mode yields only reasonably
good agreement with the exact value of the phugoid
natural frequency and damping.

SECTION 6 ~ ACCELERATION TRANSFER FUNCTIONS

g Transfer functions which relate to the acceleration, as
measured by an accelerometer carried with an air-
craft, are important because an accelerometer may
. be used as the sensing element in an autopilot,

A

“ However, the acceleration thus measured is not identical
+ with the acceleration of the aircraft due to its flight

: path, For example, the resultant acceleration measured
k. by an accelerometer located at the c.g. of the craft is

the vector sum of the acceleration due to a curved flight
path and the component of the gravitational acceleration
along the axis with which the accelerometer is aligned .
If the accelerometer is mounted so that it measures ac-
celerations along the 2 -axis, it gives a reading even {f
the alrplane is tlying in horizontal, unaccelerated flight .
This reading is due solely to the force of gravity.

Because accelerometers may be used as sensing ele-
ments, transfer functions relating the actually measured

accelerations to control surface deflections are of more
value to the systems engineer than are those given in
terms of the accelerations undergone by the airframe due
to its flight path., Therefore, this section is concerned
with transfer functions relating specifically to quantities
measured by accelerometers aligned along the x and z
axes.

If the airframe is initially in unaccelerated horizontal
flight and is then disturbed from this condition, the
change in acceleratton registered by an accelerometer
located at the c.g. of the craft and aligned along the z
axis, s, , will be proportional to the acceleration of the
airframe plus the chango in the component of the grav-
itational acceleration along the z axis.

(11-83) show thi ! tae sum of these two changes i8 exactly

the quantity on the left side of the second equation.
Mod{fying this relation in accordance with Assumptions

m-18
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than the corresponding quantities for the phugoid. Since
this is generally true, a and b can be considered large
in comparison with o and 5.

Expanding (III-34) ylelds:
f111-35) D, =54 +(a+a) 83+ (bsaasf) 8%+ (ab+af)ss+bs
By equating coefficients of like terms in (I1I-33) and
(111- 35):
Bea+a Daab+apB

111- 36
( ) £ » g

Cebe+aa+p

and by neglecting relatively small quantities on the
right sldes of (III-38):

(I11- 87) B>a c¥b
«EVE
A b C b~ BE
YN € [ DC-BE
b c c?

wheré = means "is approximately equal to.”
Then:
(II11- 38)

D, ¥ (s? +Bs + C) g3, DC-BE 505)
_ ) (o} ] C

short period

phugoid

In this expression:

B =20, pw Conad C-BE oy w
or 8F%ngp 8P c3 %y

w, «C

14
N
5P 2
wnsp ANC

. DC-BE_DC-BE

le “5gro—
2C%0, olc3E

SECTION 8 - EFFECT OF SINGLE DIMENSIONAL STABILITY DERIVATIVE VARIATION

In this section, the longitudinal characteristic equation
is evaluated for numerical values of the stability deriva-
tives for a particular flight condition. The effect of
separately varying each of the stability derivatives in the
characteristic equation is then presented in the form of
plots of the natural frequencies, damping ratios, and
time constants of the characteristic equation as functions
of each derlvative.

All plots presented are for one particular flight condi-
tion. Therefore, predictions and conclusions based on
an examination of these plots are strictly applicable only
to the given flight condition. However, it is felt that the
results are general enough to indicate significant trends
for a wide variety of flight conditions,

The following example shows how a particular stability

derivative can be varied. If an airplane is equipped with
a rate gyroscope aligned to measure the pitch rate and

11-28

(]]I-‘M) w”BP :JMQZI - UM,

(I~ 38) is generally more useful when it is written in|
terms of damping ratios and natural frequencies:

I11-39
( )Dl’-‘l(IJ s2 o—-—-—zcsps¢l —S%‘EEES‘I
‘wz“sp “ngp “np “np

where

[Dl wﬁ; “"‘pr
By writing out the expressions for the coefficients in D,
in terms of the stability derivatives, by substituting the
results into the above expressions for the approximate
natural frequencies and damping ratios, and by neglect-
ing in the results all terms whose values are small in
comparison with other terms to which they are added,
the quantitles o, , w, , {5, and {, are then given

5P P

in terms of combinations of stability derivatives:

;sp ?2@‘

1 (UOM."Z'QMQ)
Bgp

p :u: [eM.Z, ~H 2.V
8P

4 '."-.x._lL_ {gpnp _M,(UX, -8) - X2 Mg

P 2 anp wﬂs?

Approximate factors have also been derived for each of

the numerators in the X, ¢ | .s“’_, and _2 transfer func-

tions. These approxh;'\atEe factors havEe been checked
with the exact factors of the transfer functions of a con-
ventional cruciform configuration airplane at a variety
of flight conditions and have yielded reasonably good
agreement. The approximate factors are summarized in

Table 11I-4 on pages II1-268 and III-27. ]

w w
p TMgp

connected so that the elevator is deflected in proportion
to the measured pitch rate, quantities denoted as oM and
AZ are created. M q and AZ g are incremental values
of the angular and ljnear accelerations caused by de-
flecting the elevator,

(111-41) Mqrq Mg+ MM g= (Mg + OM)q

(111-42)
MQT . Mq + MQ

Similarly:

(111-43) ZQT-ZQ’AZQ

In (I1-42) and (JO-43), the subscript "T"' denotes "total",
and the terms%, and M_ are the stability derivatives
inherent in t* - airframe. The quantity an  can be 6k
pressed as:



-. "

]
M°"¢-l‘ u's'm”n

| {s, the increment to the pitching moment due to
B rate i{s proportional to fhe pitching moment due
Revator deflection. Similarly:

: 5
M5 o 2Bz, .kz
: 9 q g g

4

yeoefficient "K" in (I11-44) and (I11-46) is referred
g the "gain'’. The magnitudes of aM, and A2 in-
pse directly with K, LI and z,, can be adjusted to

V‘, any value by selecting a suitable value for K.

:lnd Z,, can be considered the effective values of

gnd 2,. I it were possible to create a value AZ,
pout creating a value &M, the effect of changing 2,
pid be determined by replacing the value Z_ in the
gacteristic equation by 2 a and then finding the roots

e equation, If this were done for enough values of
b a plot of the parameters of the characteristic equa-

j versus z“r could be made.

Jo assumptions are implicit in the plots of this section.
j first is that a control surfacu can be deflected with-
lag proportionally to the instantaneous measured
ue of a glven varlable (the theoretical mechanism
jumed capable of such performance 1s referred to as
Pperfect autopilot'!). The second assumption is that it
possible to change only one stability derivative at a
pe. In those cases where the movement of a particular
itral surface essentlally alters more than one stability
vative, two or more of the attending plots must be
berimposed to obtain the resultant trend.

ce many of the stability derivatives used in analytical

k are not known exactly, these plots are also of value
eause the effect of a possible error in evaluating a
ven stability derivative can be predicted from these

gures I11-19 to III-26 are now discussed and related

fthe approximate factors of the longitudinal character-

itic equation derived in Section III-7, when this is

cticable. In general, the trends predicted from the

proximate factors and those from the plots are similar

ly for small variations of a given derivative about
base value of the derivative (that is, the unmodified
¢ inherent in the airplane).

p approximate factors of the longitudinal character-
ic equation are rewritten below for reference:

RI-46) “hyp N IMQZ_ -UM)’

§i-47 o =1 \
ii-47) e (UM, 2, M)

"nP

Lse

bt-48) o, L [

"y
G
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(I11-49)

- Xy _Lsptnp _ My (UK, -g) - Xyl Mg
P~ 2:4"?_ “ngp 2wnp ua”
The stability derivatives for the alrframe at the flight
condition used in this section are listed in Table II-B;

the flight condition for which the stability derivatives
have the values given in this table is referred to as the

''‘hase case."

Altitude (ft.) 20,000
Weight (lbs.) 36, 300
Mach Number .65
True Airspeed (ft/sec) 673.8
X, ~.0093
, 0169
-.1223

-1.2¢

~7.46
-.0037
.000178
-2.115
.00013

Table III-S

The factored form of the characteristic equation for the
base case is;

(II-50) D, ¢ E’ +2(|,mnp B#w:?] '|:53+2C"wnap 8 uo:"]
D, « [8% +2(.0728) (,057T)5 + .00333]
[83+2(.8)(2.435)s + 5.929]

Figure III-19 shows the effect of varying X, It can be
seen that the short period characteristics are relatively
unaffected by changes in X,. The principal effect of
changing x, s to alter the f)‘hugold damping ratio, {; ,
which Increases almost linearly with X, until the damp-
ing becomes greater than the critical value, {;>1, when
the phugold oscillation splits up into two real roots. As
X, increases (i.e., moves in the positive direction), the
degree of stability of the phugoid mode decreases; as
X, becomes more negative, this degree of stability in-
creases, These effects are predicted by the approximate
factors. Since X, appears only in (III-48), which is the
expression for the phugoid damping ratio, it is expected
that Xu will not appreciably affect short period char-
acteristics. X, enters linearly into the approximate
expression for [, and good correlation exists between
the approximate factors and the trend predicted by
Figure III-19.

The expression for X, as given in (I -190) is rewritten
as:

(111-62) BT
Xy n] I(”u ¢ CQ




Chapter 11
- Section 8

9;«: w);f]
.

@ec_

[

el o
|
¥

o

ngp’

$sp

2
-8 F(8) » E’ * 2, 8 '“’:JE * Ugpng, 8 'wnng

Mach No. .65
Alt(ft.) 20, 0N0

1

-10 C. G(%MAC) 25
wt(1bs) 36, 000

Uy (ft/sec) 673.8

il
! rl

Figure II1I-19. Effect of Xu on Parameters of the Longitudinal Characteristic Equation
Base Case Equation (X, == 0093)

111-30




hls equation shows that X, becomes more negative
s the drag coefficient, Cp , of the airplane increases.

horefore, increasing the drag of the airplane (and
jence c)l(,,) t:;;ds to increase the degree of stability of the
Pugold mode.

igure 11-20 shows the effect of varying x_,. As in the
ase of X, X, appears to affect only the phugold damp-

g ratio, | " varies linearly withx_, indicating an in-
rense in pﬂugold stability with an lincrea»e in the de-
pivative X_. x_ also appears linearly in the approxima-
jon to {,, (m-49), and does not appear in the short
period approxlmate factors,

or present purposes, (III-49) can be written as a linear
Berm in X, plus a constant not dependent upon X, ;

f”“ Ip =K, +KX,

i this, Kg is positive since the quantity (2, -¥ ) is
jpositive. Therefore, the approximate factor for {, in-
cates that {, undergoes a positive linear increase with
tpn increase in X .

"The expression for X, given in (II-190) is now rewritten

s x, - F6-c)

This relation shows that either an increase in Cy, or a
decrease in the drag curve slope wauld tend to contribute
 {o the stability of the phugoid mode.

The effect of Z, is shown in Figure IlI-21, Examination
of this figure shows that changing 2, primarily affects
Fonly the phugold natural frequency and damping ratio .
A8 Z, becomes more negative, the phugoid natural fre-
quency increases, but the phugoid damping ratio de-
-creases. Z, does not appear in the short period ap-
 proximations, (III-46) and (III-47.

j In the approximation of the phugoid natural frequency,
+(I-48), Z, enters in the form of a factor of the product
0z, . Since M, 1is negative for the base case, as 2,
.becomes larger in absolute value but still retains lts
 negative sign, the product Z M, increases; as a result,
the approximate phugoid natural frequency increases ,

 In (111-49), the second term on the right is negative,
- This term increases in magnitude proportionally to
Syt and therefore «,  causes this term to become more
 negative resulting in a decrease in the value of {;. Con-
h sequently, analytical approximations verify the existence
of the trends shown in Figure III-21.

¢ Figure III-22 shows that as 2, in the neighborhood of
the base value, -1,24, becomes more negative, the only
- essential change in the natural frequencies and damping
ratios is that the short period natural frequency in-
g creases. This Is In accordance with (I1I-46); since Mg
| is negative, as Z, becomes more negative, « ln-

‘ Rgp
. ¢reases.
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Z, also appears in the approximate expressions for the
short period damping ratio and the phugoid natural fre-
quency, both of which appear in the phugoid damping
ratio approximation. However, Z, occurs in both the
numerator and the denominator of the expressions for
{gp -and neither of these parameters is appreciably
affected by reasonably large changes of Z, about its
base value. Hence, both Figure IlI-22 and the approxi-
mations can be used to predict that changes in Z, prin-
cipally affect only-the short period natural frequency .

Figure II1-23 shows that large changes in the value of
z have no appreciable effect on any of the parameters of
the longitudinal characteristic equation. Since Zq does
not appear in any of the approximate factors, this result
agrees with that which would be predicted from them .

The effects of varying M, are shown in Figure III-24,
This shows that changes in M, drastically affect both
short period and phugoid characteristics. The relation
between the phugoid approximations of (I11-48) and
(111-49) and the trend predicted by Figure II1-24 are
discussed first,

(111-48) and (I1-49) indicate that the phugoid natural fre-
quency increases and the phugoid damping decreases as
M, increases in value, and also that as M, moves in the
negative direction, «,  decreases and {, increases.
Figure I11-24 verifies this.

Figure 111-24 also shows that the short period natural
frequency and damping ratio are affected by M, , although
the approximate expressions for these, (I11-46) and
(111-47), do not contain M, . However, in arriving at the
approximate factorization, it was assumed that «; gp “np

and Isp>>lp . As M, moves in either the positive or
negative direction from its base value, the phugold roots
rapidly become of about the same magnitude as the short
period roots, as shown in Figure 11I-24, so that the
approximate factorization no longer holds.

Figure II-25 shows the effect of varying M_. The phugoid
characteristics are relatively unaffected.. As M_ moves
in the negative direction, an increase in the short period
natural frequency and a decrease in the short period
damping ratio result. An increase in M, causes the I
short period mode to break up into two real roots. These :
effects can be predicted from (III-48) and (I11-47).

i
As My, becomes large and negative, the term -U M _be- ;i
comes large and positive, and thus hg p becomes large |

Since an appears in the denominator of the approxima-
P
tion for L, , an increase in “n e results in a decrease

in the short period damping ratio.

M, enters into both the numerator and the denominator of
the phugoid natural frequency approximation. Thus,
changes in M, are only slightly reflected in @, .

The first term or *he right side of (11-49) contributes the L
major portion of lie phugoid damping ratio. For large i
magnitudes of M, (and therefore of w“sp)' the second i

111-31




Chapter III

Section 8
2.6
w
8P TN
2.2
o
o leng
5,8
&1y
3 1.8
D
]
. 18
[
[N
E=s =1 S
1.2
1
Rl
J
.6
{ _\\
1 .4
'\ L_ F ©
\\é 1 npﬁL___\
1 o~ \ ,
T _\\ Py
2 >
e e
9 8 7 6 5 4 3 2 1 \- -2 ~4’\ 'Fl-l /-1 -8 x-JQ
2
-2 et -
T
-.4 \ 1
-.6
l— F'(8) -EZQZLPwnP s+w,§;:J I_S:'ZCSP‘“nsp sowgsa —~4=.8 \
Much No. .65 -1
ALt (ft.) 20,000
C.G. (mac)| 25
Wt. ( 1bs) 36, 000
Uy(ft/sec)| 673.8

|

111-32

Figurc 111-20. Effcct of X on Paramcters of the Lovgitudinal Characteristic Equation

Buse Cuse Equation (X~ .0169)




Chapter II

Section 8
)
,'IP--X
A
2.2
-p
nr
3 s
E T
i 1
—1.8
: L
Ralal
1.4
i 1.2
8 ‘ 1
L
'¢\. "'__\
-1
3 . < |~
\T‘ 8 "
N w
\ n,
= .4
-4 -8 -12 -16 -20 -24 ~-28 3‘
28 24 20 18 12 8 4 D + y
1
.2 = 2,
/l/ -.4
<»l
T -.6
i 2 i
|
-.8 F(8) -E‘02{Fuﬂp souga E’QZ(SPA‘"SP Boug“].__
Mach No. .65 l
Alt. (ft.) 20, 000
C.G. (MAC) | 25
Wt. (1bs) 36, 000 g
Uo( ft/sec) 673.8 |
i

Figure 111-21. Effect of Z, on Parameters of the Longitudinal Characteristic Equation
Base Case Equation (Z, +—.1223)

1-38 ]




Chapter I
Section 8

[Teee :@--(;-z‘;){l
N

;
[
\\

TI-W ‘SP \
{ ../7 wn, N ’ -
[ 8 7 8 8 4 3 2 -1 -2 -3 ¢ -6 -6 =T, -8
u 1 & P
»
4 2 | —
A
Vi -3
a
Tl
/ )
S -5
1/ -5
/ "
/I -8 F{a) = ER + 2pan, 8 "-\3,] Ea + 2 gpengp 8 ‘”‘IJ
A -8 Mach No. , 83
/ Alt, (ft.) 20, 000
-10 c.a. (xMAC) | 25
Wt. (1bs) 36,000
Uo(ft/8e0) 673.8

Figure II1-22, Bffect of I, on Paramsters of the Longitudinal Characteristic Equation
Dase Cage Equation (Z_~ -1.24)

II-34




Chapter I
Section 8

l LY ]
R
w ale
/ Ngp
2,2
2 - —
F(a) = s’oz(rmﬂp somga E""’("un” loaésa
1.8
Mach No, .65
L6 Alt.(ft.) 20, 000
C.G. (ZMAC) | 25
1.4 Wt. (1bs) 36,000 ‘
Uo(ft/sec) | 673.8 14
1.2
1
Ler
.6
i
Wy o 1
| 4 \ 2 ;ft
i
40 3'0/ 2 10 -10 - 20 - 30 - 40
4 ‘P —Zq e
(i

Figure I11-23, Effect of Z, on Paramoters of the Longitudinal Characteristic Fquation
Base Case Equation (Zg==7.46)

-85




Chapter It

Section 8
=1
{ ~~{ “J; 3 8 _~
i \ \ ;; w
@ - /é— REp
“P'>\\\\ |8 . »
&2

| \L?ﬂ . yd

i /

} . 5

/
N W,
L .
ﬁ‘j /-'.Tz
\ Cor
| £
28 24 20 15 12 8 3 T8 -8 -12 -16 -20 -2¢ -28
L4 N My
~2
BN

\\ Pand

] |
§ i P(S)-Ea’ZCF%p 8’“’33 E"z’z‘SP“‘ns? 5”‘"35P
a Mach No. .65
i Alt. (ft.) 20, 000
o C.G. (aAC) | 25
Wwt. (1bs) 36, 000
Uo(ft/nec) 673.8

|

Figure 111-24, Eflfect o} N, on Parimeters of the Lonpitudinal Characteristic Equation
Busce Cose kquatcon (N, 00011)

HI- 36




e

Clupter IL

e e

Bection &

.
a1
T 7

- il} . 70
-\;; R P/ |
g
\\ %',JL..':J #_ 50 4/

30

V

7 20 T

3
Ve - 30 =3
/ -4 .2

d /-—‘sr
wll T— k
) - 50 P N .1
-
P Te - 60 b

Ve -10 M

- - N
F(8) o} 8% ¢ 2pn, ““"3,_' E‘"zisv“nap suu}”;' .

Mach No, . G5

ALt (ft,) 20, 000

C, G, (XMAC) 25
WL, (1bs) 36,000

Ug(ft/nec) |- 673.8

. s
e

-t

Pigure 111-25% Effect of N, an the Paramatars of the Longitudinal Characteristic Equation
Bawe Case Equatiun (N, -=.0037)

1o-31



Chapter 111
Section 9

and third terms on the right side of (III-49) become ex-
tremely small in comparison with the first term. Since
these termsare relatively very small to start with, their
decrease does not appreciably change the phugoid damp-
ing ratio.

The effect of varying M, 18 shown in Figure III-26.
Changes of M in the vlclnlty of the base value (-2.775)
can be seen to affect principally the short period char-
acteristics, A decrease in M_ increases both the short
period damping ratio and the short period natural {re-
quency, whereas increases in M, decrease both o, and

{gp . (IO-48)and (ILI-47) show that these effects are ac-
counted for in the approximations.

SECTION 9 - APPROXIMATE FACTORS EXPRESSED AS FUNCTIONS OF THE BABIC
NON-DIMENSIONAL STABILITY DERIVATIVES

In this section, the approximate factors of the
longitudinal characteristic equationare expressed in
terms of the basic non-dimensional stability derivatives
and other parameters of the airplane and the flight con-
dition.

Aerodynamic data from wind tunnel tests, flight tests,
and theoretical analyses are usually presented in the
form of basic non-dimensional stability derivatives
because correlation between different airplanes and
different flight conditions is most easily attainable when
the stability derivatives are in this form. For this
reason, Chapter IV of the volume is devoted to a dis-
cussion of these basic non-dimensional stability deriv-
atives,

Expressing the approximate factors in terms of the
basic non-dimensional stability derivatlves aids in de-
termining the effect of varying these derivatives on air-
frame motions, These expressions should therefore
help the reader relate the discussions of Chapter IV
to materfal presented in the present chapter, With the
approximate factors in this form, approximations to
the airframe modes of motion can also be obtained with-
out first calculating the dimensional stability derivatives.

SECTION 10 - EFFECT OF FLIGHT CONDITION ON THE LONGITUDINAL TRANSIENT
RESPONSE OF AN AIRPLANE

Previous sections of this chapter have been devoted to
the discussion of particular flight conditions, In this
section, the effects of varying the flight condition on the
transient response of an airplane are demonstrated by
presenting analog computer traces of the solutions of the
equations of motion for various flight conditions. Sta-
bility derivatives used ir this analysis are theoretical
values calculated for a hypothetical high-performance
Jet airplane of conventional cruciform configuration .

Plots which can be used to determine the damping ratio
and the natural frequency of oscillatory modes from the
transient response are also included in this section in
addition to the derivation of a formula for the time re-
quired for an oscillatory mode tc damp to one-half am-

plitude. Finally, some traces, which show the effect
of varying a slngfe dimensional stability derivative, are

HI-38

In summary, it appears that there is good correlation
between the approximate factorization of the longitudinal-
characteristic equation and the curves presented in this "
section, It seems reasonable to conclude that both can
be used in evaluating the effects of variations in the
stability derivatives, In general, the curves are more
reliable for predicting the effect of large variations in+
any of the derivatives on the resulting airplane motion,
but it should be emphasized that neither the approximate
factors nor the curves yield reliable predictions ofj
trends for all flight conditions. However, since both the ]
curves and the approximate factors are based on flight
conditions that are more or less typical, their reliability;
is generally good. :

To derive the desired expressions, the approximate
quantities from (II-190) are substituted into (III-46)]
through (I11-49). The last equation in (I1I-49) is simpli,

fied by using only the first term on the right side,

(It has been mentioned previously that this term is th
major contributor to the phugoid damping ratio.) The
resulting equations are: * ;

o .
(I1~B5) g, ~ i(_c_) [- _.ZJG"« * CD) "2, Cla]

C

(1\( ) l: ‘21'(;‘__;’_3 p
. *‘—(‘r e 96l

CD~C

b 2 2'rc..P

where .

ycnﬁc‘ T —%u ;
The quantities u and = were first introduced by M
Glauert, ‘A Non-Dimensional Form of the Stabilif
Equations of an Airplane,’ Reports and Memorand
R & M No. 1093, British Aeronautical Research Councili
1927, ]

given,

Figure II1-27, IN-28, and I-29 can be used to determind
the damping ratio of oscillatory modes. 8ince
damped period (Tp) can be read directly from the re
sponse curves, the natural frequency can be calculatel
from: ;

(111-56) a.,,.%’;'.wn -3

A parameter sometimes used to describe system pery
formance {s the time for an oscillatory mode to danj
to one-half & .nlitude. This parameter is denoted by th
symbol T, . ‘rhe equation for an oscillatory mode ¢
be written in the form:



Chapter 10
Section 8

10

N

I\

4 -6 F(B)-E’02tpwn's'uﬁl:| [:33'2‘3Pwn"stuﬂsp

Mach No.

.65

Alt. (ft.)

20, 000

C. G. (ZMAC)

25

Wwt. (1bs)

36,000

U (ft/sec)

673.8

Figure 111-26. Effect of #, on Parameters of the Longitudinal Characteristic Equation

8ase Case Equation (N, «=2.775)

111-39




Chapter I

Section 10
1.5’ [ 1.56
FINWN N
1.0F /\ 1.0L LT
[ N~ r: \ —_—
[ C
e .5E
{=0.1 C C='J.2
. 2.8 o R 1.0 1.8 2.0 2.5
ts,_‘?}o‘A “ 0 AOLIISA ,.:....E—AAAJIA.. %..
2 Ta
1.5
[
b
1.0 /\
; /
<k
{=0.3 T {«0.4
O>LAA " P I TS U I Y n:LLL‘L PN ST T S  TREa lLAAlLAI
r ) 1.0 1.5 2.0 2.5 0.5 1.0 1t.5 2.0 2.5
t t x
T Ta
LSk 1.5
. .
10 /’ 1.0 7/—*¥
s .5F
{=0.5% 1 {=0.6
0 . A Y dednde Aedeededd. i e Ad i A 0’ 4 i A A e JI Al
0.5 10 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5
I i | t i 1 4 n 1 t ) l
T T
L [
b L
[ L
1.0} 1,0_ Lo
.5 5l /
r {-0.7 r {-0.8
OA A Aod A i i hd 4 bl o’ i FE G N b i, 'IJA'AIA
0.5 1.0 1.5 2.0 2.5 F 0.5 1.0 1.5 2.0 2.5
] v [ [ I TR Q! I
Ta T,
1.0 — 1.0p
-/ i
L {=0.,9 [ {= 1.0
0 VAU WA P S i . ra O’LL)A W WO P S W S I G rars
r 0.5 1.0 1.6 2.0 2.5 M 0.5 1.0 1.5 2.0 2.5
1 1 L { 1 [ | | t i |
Ta Ta
1
Tp » &L
w,

8! 2
lerra !
a

111-40

Figure I11-27. Typical Response Curvea of Second Order System to Step Function Disturbance
Whon Damping Ratio is Less than Critical ({<1)



Chapter 111
fection 10

b T 1T I O A O
F——:\k =< p.p ] ' ; I @~ Peak Number
- . T~ |
3 ""-3
L |
o L s LLl
2.3 N

g
1
/

il
7!
/_
/

1S T B
~ Bag | \ /\}\ | \l | \\ : \
— < i ! AN
’\T‘ ®s 10 J\:\ : \{\T\\\Q\\ \N
Y T
N r o NN
.08 i BN ~ AN N \\\
b__ | N
o "W s RN AR NA
05 ™~ i \\ \ \\ |
] LI NN ;\{
.04 N 1
' 1 — \\ NT \
.03 | AN

‘ ‘ l
.Q2 N N
Pugk (m= 0) cap \ \k
he any Peuk
o N ] N

ey

i} A
.0 Q2 .03 .04 .09 l . . -6 .4

-
[
&
-
o

Subsidencye Ratio i“'—“

Y

4 1 1

T p—

84U He ne U0
”"-j""g Bl -’_”,_g. y ol .\,‘_!._,.':Lg. 4+l
Un to,‘ PR lu“ (ug~ W

Figura LIL-28, Duwping Rutio of Oucillatory Ceamionts an a Function of Subsideoce i
Rat ia (ar Socowd Ordor Systums Co

1141 1




N

\

utio

\

Xy * X,
= Subsidence R

ma]

\

ANHA

AN

1N
)

N

X

X

Peak m=0 can be uny peak ~———i

AN

AVAN

NN

N
N

NN

NNAEAVAN

NN

~d
N

AN

—

NNMENN

NN

<
N

\\\\\

INNSNAANS

Chapter III
Section 10

/
/
g NN/ //
P &9 o0/ AmES
d i 74 \w / x\ 4 Se
\k\ \\“\\\\\ \\\ﬁ \\\\ MJ
¢ g e g an \\_\\A\ N
: m : [ \w\ﬁm\\_ m m

02
111-29, Damping Rotio of Oscillutory Transien

Sy s

Wl Occdor

Ratio for Secor

of Subsidence

wtion

a Fu

ty ns

Figure

111-42




p87)
: XeAe %t cos(upt + ¢)

X - amplitude at any time t
a = damping constant -« {w,
wp = damped natural frequency

A «maximum amplitude
¢ = phase angle

flot of (III-57) appears in Figure III-30. It can be
pu from this figure that the curveAe ~ ** bounds the
Ve Ae " *tcos(wpt + ¢)ithat I8, the magnitude of X at

time, t,, cannot be greater than the value given by:

i Ae-l'

‘ ,>TQ

/ £ < ——
\__/

# [ Ao~ “fcos(apt + ¢)

Flgure I11.30

_‘-58) (x) by Ae "oty

" at time, t, , the value of X must be less than, or at
pst can be equal to:

'59) X, = Ae " 2ta

J1-58) and (I1I-59) can be used to determine the time
jquired for [XJH to equal one-half ([X] e

h-00) [
800 Wy aemeny
m‘a Ae " ot3

e-“lnze-“ﬂ

hking the natural log of both sides of (I11-81) and per-
eming the indicated operations yleld:

-61)

.”) -at, . ind - at,
‘ a(t, -t,) = 'in2

tz'tl'T*'L%a

Ty~ "633
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(111-63 . .593
I

(111-83) gives the value of the time required for a stable
oscillatory mode to damp to one-half amplitude, If the
system is unstable, (I11I-63) shows the value of the time
required for the mode to double its amplitude. (This
equation is not used in the following analysis, It is pre-
sented here solely because it is a parameter that appears
frequently in literature dealing with aircraft stability
and control.)

Figures I1-31, 1I1-32, 111-33, and III-34 are analog com-
puter traces of solutions of the equations of motion for
a hypothetical high-performance jet alrcraft flying at sea
level at the indicated Mach numbers. From these
curves, the natural frequency and damping ratio of each
of the oscillatory modes can be obtained.

By computing enough such solutions, the values of the
short period and phugoid natural frequencies and damp-
ing ratios could be obtained as functions of Mach number,
The four curves actually shown are presented mcerely to
indicate the expected variation of these paranicters with
Mach number. From these curves, certain ficts can be
readily determined: the short period has its highest
frequency at maximum Mach number; the phugoid di-
verges at Mach numbers of 1.0 and 1.2; and the short
period is more than critically damped and splits up into
real roots at M - 0.8,

The effect of altitude variation {s shown In the curves of
Figures MI-32, I111-35, and 111-36. As in the case of the
traces showing Mach number variation, more complete
information would be required to make statements of
any significance. However, even with these few traces
available, there are indications that the phugoid natural
frequency and the short period damping ratio decrease
with altitude, and that there is no uniform variation of
any of the other parameters with altitude at the Mach
number used.

Figures I-37, 1-38, and III-39 show the effect of vary-
ing the stability derivative M . Figure 11I-37 is the
solution for the flight condition of Table III-1, Figures
II1-38 and II1-39 are solutions of the equations of motion
that are identical with those corresponding to Figure
I11-37 except that the value of M, has been changed as
indicated on the figures.

In the discussion of the effect of variation of M_in Sec-
tion II1-8, it was concluded that the primary effect of
¥, in becoming more negative was to increase the short
period natural frequency and to decrease the short period
damping ratio. These same effects are {llustrated in
these figures.

To summartze, it should be stated that much of the
information concerning the dyniamte response of an abr-
frame can be ob!vined mathematically only by rather
lengithy computaticont methods, whercas the siame nfor-
mation can be obtained with comparative simplicity by
the uso of an unaloy ecomputer,

T -1
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N N U I S D B TR R

0 10 20 30 40 50 60 70 80 90
t(sec) —»
Figure 111-32. Analog Computer Record of Time History for Puise Elevator Deflection,
Threo Degree of Freedom (Mach No, s ,8; Altitude = Soa Level)




Figure 111-33, Analog Computer Record of Time History for Pulae Elevator Deflection.
Three Dugree of Freedom (Mach No.» 1.0, Altitude = Sea Level)
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T T Aititude (1t ) 20, 000
Weight (1bs ) 30, 500
Mach Number .838
True Alrspeed ((t /sec ) 660
' -
o (0820 Ly . 856 N, -, 616
;n o Ly, 217,28 Ny 3,88
.‘u 770 »
Lﬁ N, (0028 p iz geen
’ “LO%B N, . op57 :“
=—ll
L, -.17?0 Ne, =1,383 g_il Izz 2370
TABLE I)1-6
(118-72)
Gt )ata)
8) . g0 2,661 - 3.885
D) (___g_fg(__ﬁ_oa -93-0?51 B+)
~0.001355 _/\1. 7177 ol o,
] 1]
(11-138)
8 s 3
— ] ( ol 9
7482 24,56 ("""‘” A N T
x(8) 8{—2 H(VB )£ 4 Zna
- 0, 001368 L1117 “do “np
wherer  «, =0,203 “ng = 16710

¢, =0.00563 {p =0.0242

The roots of the lateral characteristic
équation, Dz , show that there are three
characteristic modes of motion:, the rela-
tively lightly damped oscillatory mode
called the "Dutch roll," the first order
divergent mode of relatively long time
constant called the '"spiral mode," and
the first order convergent mode of rela-
tively short time constant called the
"rolling mode." These will be discussed
in more detail later.

in examining the analog traces, it must be kept in mind
that each of these records the motion of the ajrframe in
one depree of freedom; for instance, the g trace shows
all the sideslip, {.e., the summation of the /> mottons
of all three modes, And similarly, each mode will, in
general, contribute to every trace; for example, the
dutch roll impresses its oscillatory motion on the 5, 4,

and y trace. (The quantity ¥, rather than ¥ s recorded
beeause i is o itzell that enlers the equations of motion.)

Firures I11-40, II1-41, and 11I-42 are Bode plots of
(III-?I)., ([I1-72), and (111-73), respectively. Several
conclusions can be drawn from tngpection of these plots .

Since the aniplitude ratios al the dutch roll natural fre-
quency in Fyrures HI-40, 111-41, and 111-42 are nearly
equil, it may Lo concluded thit comparable amplitudes
ol 5,0, and 4 oceur In the duteh roll mode of the

NnI-54

transient response when the alrframe motion is excitéd
by a rudder deflection.

From Figures [11-40 and I1I-42, or from (ITI-71) and
(1I1-73), it can be seen that the factor in the denominatos
which characterizes the rolling mode 8 almost exactly
cancelled out by a numerator factor in these two res
lations, '

From this it may be concluded that only relatively sma !
amounts of  and g occur in the rolling mode. In othe
words, the rolling mode is almost totally composed g
rolling inotion. (This is, of course, the reason for cal
ing it the rolling mode.) -

The amplitude ratio at the spiral break point, ( Jl'. )

Figure I-40 is much less than the amplitude ratig
at the spiral break points in Figures Il[-41 and -4
It may therefore be concluded that at any instant ()
magnitudes of ¢ and ¢ in the divergent spiral mode &
considerably greater than that of g . It follows that th
spiral mode can be sald to be composed mainly of rd
and yaw. g

Figure I11-43 shows traces of the indicated varlab‘
obtained by an analog computer. The following fad
can be determined from this figure: After the du
roll oscillation has essentially died out, the roll angl
& , diverges while the yaw rate, r , increases sligh
in value; the sideslip angle,5 , remains zero.

Since the divergent spiral is the only mode which

mains after the roll subsidence and dutch roll mo
have disappeared, it can be said that ¢ and r are
dominant degrees of freedom in the spiral mode. §
increasing value of yaw rate, r , represents an incre
ing value of yaw angle, ¢y . The divergent spiral
is then composed mainly of increasing values of §
and roll. This result agrees with the conclusion dr
from inspection of the Bode charts, ;

Flgure I11-43 also shows that the same order of my
nitude of 5, 4 , and y occurs during the dutch roll,
is sufficient to compute roughly the area under the cy
of r during one-half the dutch roll period to get an |
proximation to the amount of yaw angle that exists;
any given ttme.) '

The rapid roll subsidence is indicated by the facl §
the curve of the roll angle, ¢ , plotted against tin
reaches an essentially constant mean value {(except
the divergence due to the spiral) in a relatively s
time. This effect is not evident in the curves lor £§
r. These facts verify the statement previously m
that the rolling mode is composed principally of ra
motion,

The characteristic response of an airplane to 2n impy
rudder deflection can be sunimarized as follows: aftes
rudder is deflected, the airplane rapidly rolls, yi
and sideslips. 11 then execules a damped oscill
i all thiee deprees of freedom (duich voll).  All d
the osciltatory mation,. the moean value of roll angle
yaw angie incer wes. This diverpence condintes §
after the osciltaiory mode hus damped out. This 1)
motion ts, of conrse, the spiral divergence,
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8 mentioned in Chapter U that the transfer functions
dder deflections can be altered to apply to aileron
tions merely by replacmg 5y by 5, wherever 3
lrs, and by changlng Y} 2 L, , nndN, to Y, R L,

N, respectively.
’ g these changes and remembering that, according
ssumption x,v;A = 0 the transfer functions (III-87),
j08), and (III-88) become:
14)
e Ny a8yt ecys by
SUNC T M D,
Bye oLy B, N,
o
C,-L,A(l—‘; N) Ny, (A,-.L )

Dp-fh‘u“; Le - L'AU; N

1
_¢.()2)_ .N“/'A) . s(AQs3 + B8 + Cy)

g 3,(8) D, D,

;i A_"L.‘ON.AA‘

EBye -Ly, (N, X)) oNy (L mAY)

i Co = L (Y N +N ) "N"‘( OL"YVLr)
-73)

i y(s) , (w/a“ . (Ay,tl";ﬁws’ +C,8+D,)
f 5,0 D, D,

' A*-N,AoBlL.‘

B, -L; (N, -8, )-N, Syl

¥ C, - -1., REL
-‘ D*l-— (L' NA-N‘ L‘)

stuut‘lng the data from Table III-6 into (111-74),
B-75), and (ILI-76) yields:

-77)

Bis) . 0. 304 (8 +0.0495) (8 - 6. 250)

 (8) (8-0.001355) (8+1.777) (83+0.09128+3. 525)
$(8) | 59,2 (83 +0.01747 & + 3. 455)

L (8) (8-0,001355)(8+1. 77T (83+0. 0012 8+3. 525)
TOJP (8+1.65)(8%-4.398 8¢17.07)

(s) S(S-O. 001355) (3+1. 777) (8340, 09128+3, 525)
J1-77) are now arranged in the K G(s) form:

ps) 250
. -14.38 —Uﬁﬁﬁj
(s) ( ) _gnm
' -0. 001355 L1171 N3
i1-19) ( )
{ —"— + -3 8¢+]

x ’1--11070

)
i o “Rg, 1
-0, 001J55 1. ‘777
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SECTION 12 - AIRPLANE RESPONSE TO AILERON DEFLECTION

(111-80)
(1 65 )i Eh 8 'D
(8) . _ 543, 7
5‘(3) )( )( Q-J s.)
—o 001355 1.711

where: {p~0.0243 {,+-0.827 {, = 0.0047
@ -18775 « -2659 «a -1871

Flgures Ill 44, II- 45 and 111-46 are Bode plots of
(111-78), (11- 79) and (III 80) respectively.

Examination of Figures I1I-44, I1I-45, and III-46 and
equations (I1I-78), (III-79), and (I1I-80) leads to much
the same conclusions that were drawn from the transfer
functions and Bode plots for rudder deflection,. with
certain important exceptions.

Although (1II- 80) and Figure III- 46 show that the roil
root approximately cancels out of the .b\&. transfer func-

tlon as in the case of rudder deflection, tﬁere i8 no com-~
parable cancellation of the roll root in the £ transfe.

8a
function in (OI-78), In addition, (OI-79) or Figure oI1-45
shows that a numerator quadratic approximately cancels
out the denominator quadratic representing the dutch
roll mode In the 34_ transfer function. These facts in-

dicate that when tht transient motion of the airplane is
excited by an aileron deflection, there exists a relatively
small amount of rolling in the dutch roll mode and some
sideslip in the rolling mode. It has been shown that,
in the case of rudder deflection, comparable magnitudes
oft, ¢, and ¢ occur in the dutch roll mode, whereas the

rolllng mode consists of almost pure rolling motion.

I may then be concluded that the relative magnitudes of
the degrees of freedom occurring in a particular mode of
the transient response depend upon whether the transient
is excited by an aileron or a rudder deflection. Further,
in the case under consideration, there is a relatively
smaller amount of ¢ in the dutch roll caused by alleron
deflection than thereisin that due to rudder deflection.
(For instance, %E:_: in the dutch roll due to aileron de-

flection will be smaller than ¢uAx in the dutch roll exclited
by rudder deflection.) Puax

Figure 1I1-47 shows the analog computer solution of the
lateral equations of motion for an aileron pulse deflec-
tion. Comparison of Figure 111-47 with Figure I1I-43
shows that the ratio of the maximum roll angle to the
maximum sideslip angle in the dutch roll mode excited
by alleron deflection is less than the similar ratio when
the excitation is applied by deflecting the rudder.

This result should not be understood to be the general
case; It should rather be considered an example of how
transient characteristics maybe predicted from observa-
tion of the transfer function or Bode plot.

Even though the' - are certain differences in the transient
motions for the ~..cral degrees of frecdom, depending on
which control surface is uscd to excite the transient, the
ratioy of the degrees of freedom in any of the modes are
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roughly the same.

In summary, the rolling mode is an almost pure rolling

motion; the cutch roll mode contains roughly ceuapars
amplitudes of rolling, yawing, and sideslip; and
spiral mode consists mostly of yawing and rolling.;

SECTION 13 - APPROXIMATE TRANSFER FUNCTIONS

By taking into account the results of the above analysis,
some useful approximate transfer functions can be deter-
mined.

Since the dutch roll mode approximately cancels out the
5‘% transfer function, this mode is considered to censist
solely of the sldeslip and yaw degrees of {freedom .
Figures I1I-44 and 1I1-46 show that the sideslip angle is

e
S Y

approximately 180° out of phass with the yaw angl .:
the dutch roll natural frequency. This permits an ad
tional simplification to be made by assuming that f«

Under these assumptions, the dutch roll mode redy
to an osclllation during which the wings remain lé
and sideslip angle is equal but oppasite in directlo
the yaw angle, as shown In Figure I1{-48.

N

] e

Bt =B

Figure II1-48 One Degree of Freedom Dutch Roll

SECTION 14 - ONE DEGREE OF FREEDOM DUTCH ROLL MODE

A single degree of freedom approximation to the dutch
roll mode of motion is now derived,

If, as stated above, this mode consists only of the side-
slip and yaw degrees of freedom when it is excited by
aileron deflection, the roll angle, ¢« , and its derivatives
can be set enual to zero In the lateral equations (Il1-66)
to arrive at this approximation. Further, since only the
allerons are to be used, 3; may also be set equal to
zero.

The relations (II1-85) then become:

(111-81)

F-Y Lrdn0

h Lﬂ/: -.(,I u/F 1 l) w- l‘rq' " LBASA

“NgL e N s Ny 8,
The second of these felations can be eliminated from
consideration by the fact that the roll angle and its de-

rivatlves, and therefore the sum of the rolling moments,
must vanish.

When B--y¢, the first equation of (111-81) becomes
-Y 8- vand 18 not applicable to the problem at hand ,

The one degree of freedom approximation sought for
must then agino from the third rolation of (111-81). By
substituting £- -y into this equation and taking the
Laplace trincform:

11-64

(83-N8 +Njg) £(8) ==Ry §,(8)

which leads to the approximate transfer function;|

(11-82) N
T ) R
6,(8) 83=N_ BeNg
Substituting numerical values from Table III-8]
(111-82) ylelds; )

(I11-83) _4(s) . + 0,615
5,(8) 83+0,0957 8+3.55

(111-84) 0 173 ;
Aﬁl - —_ - — :
5.(8) 84,20 5.1 83 ,2(0.0304) 5,

A 2 Y (1.883)2  1.883

& n

where: . LT 0.0254
2N

a, - AN+ 1. 883
Nl

Ko--—8.0.173
N

Flgure 111-49 shows the Bode plot of (I11-84), and F
111-50 shows the analoy computer solution of the
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hiation of (I11-81) with 5.~ , for an aileron pulse de-
petion,

B check the accuracy of the one degree of freedom ap-
Joximation, three comparisons are made; the numeri-
)l values of the dampings and natural frequencies in
HI-78) and (I11-84) are compared; the Bode plots of
gures 111-44 and II[-49 are superimposed; and the
palog computer traces of the one and three degree of
jeedom soultions are compared,

DUTCH ROLL MODE

t | w,(rad/sec)

One Degree of Freedom . 0254 1. 883

Three Degree of Freedom .0243 1.8775

'VOomparlson of { and w, of one and three degree of
Freedom Dutch Roll Mode

TABLE III-7

i one degree of freedom approximation to the rolling
jnode is now developed,

Bince the rolling mode consists almost entirely of roll-
jng motion, the rolling moment equation with the side-
Blip angle and the yaw angle set equal to zero ls used
#n the approximation,

11~ N -
ju-86)  p-ip Ly 540 Ly By

‘ ly alleron deflection is considered; {.e., 3; =0,

'The transfer function for roll angle due to alleron de-
flection is;

Ly
) R N
Sn(s) s(s -Lp)

(11-86)

Substituting numerical values of the stability derivatives
Linto (111-86) yields:

(0-87)  _¢(w) _ _ 21,25

Bk(s) 8(8 + 1.695)

k As in the longitudinal case, the factors of the complete
t three degree of freedom lateral transfer functions can-
not, in general, be expressed exactly in terms of the
| stability derivatives in any usable form,

: In this gectlon, approximate factors ?t the lrl.;msler func-
Ftlons, 2,4 % 8 b g Y oand 22, are pre-
o, O b‘ B > b 5 b

: ( A A A R A

| wented,

; An approadnate factorization of the lateral charucterlstie
equatton can be developed in the following way.

Chapter 111
Section 16

Table II-7 gives the values of { and w, for both the one
and three degree of freedom cases. It can be seen that
these values are very nearly the same,

In Figure I-51, the one degree of {reedom g% transfer
unction (from Figure II-48) and three degree of freedom
= transfer function (from Fipure I11-44) are plotted.
’fhere is very good agreement In phase angle, natural
frequency, and damping; but there is a considerable
difference in amplitude ratio.

As a final check, the one and three degree of {reedom
solutions of the equations of motion from an analog com-
puter are superimposed in Figure II-52. This figure
shows that there is excellent agreement between the one
and three degree of freedom solutions except for the
amplitudes of the curves,

In summary, the one degree of freedom solution of the
yawing moment equation {8 a very good approximation
to the dutch roll mode, The approximation shows the
dependence of dutch roll damping on the stability de-
rivative N and the dependéence of the dutch roll natural
frequency on Ng-

SECTION 15 - ONE DEGREE OF FREEDOM ROLLING MODE

or, in the K G(s) form:

(11-88)  _¢(s) ,_ 16,1
5

BA(8) g H .y
1,605

Figure III-53 is the Bode plot of (I11-88), and Figure
I11-64 is the analog computer solution of {III-85) for a
pulse alleron deflection,

The magnitude of the roll root as given by the one degree
of freedom approximation Is very close to the exact
value given in (111-79).

Figure 11I-55 consists of Figures IOI-53 and HI-45 super-
imposed; similarly, Fipure III-56 consistsof Figures
I11-64 and III-47. Inspection of Figures III-55 and
111-56 shows that there is very good agreement between
the exact rolling mode and the one degree of freedom
approximation. The conclusion that the rolling mode
consists mainly of rolling motion appears to be valid
for the case under consideration,

SECTION 16 -~ APPROXIMATE FACTORS OF LATERAL TRANSFER FUNCTIONS

The lateral characteristic equation is;

(111-89) by - 8(Ast + B9 .84 D3 +E) 0

Since the quantity In the parentheses generally factors
imo a quadratic amd two first order roots, the character-
istic equation can also be written as:

11-90 ' o
( b ones( .‘.‘L) (54 _?‘.) G: "2y, 8 e Q:Q
- TN/ TR S

NS} B W ;
Holling Modo Duich Roll Mode

Spival Mode

1mi-67




Chapter 111
Section 186

\.\19\ A

oAl S

. N\ A

W

I

- 20 @___/ \

(Tﬁ'u 5 1) (~ T/SA ) 57 1) : \;1

: Amplitude Ratio in db
j’
L7
T

//
2

- By

Ok ' 82 gg

(—’rssu)('r,su) £ 220 5,1
wi w

- 60 ng “np

<

v L

8.

c K 1 ;
!L SA ﬁs"s_z.vg_c.ﬂsol 3 \Q

— w2 w2
\ " "p

[ SUP— S

\’

- 100 A v

H
p—
W

W

— LEGEND ] \

e m W

Three Degree of Frecdom

n

>

&- 200 3

Q @ One Degree of Freedom ,

8 —

P I |

%0‘ 250 I EEEEEREL | N

o 3 L_\

£-300F 14. 38 ) 1

.- 300 @ or 1 1 1 L {18775 .0243 | [N
| @l = 23.16 | .0495 | 6.250 | ,001355 | 1,977 LIS \
| | it
) 173 )

- 350f @ or 1.883 | .0254

- 15, 24db
001 .01 1 1 10
I'requency (rad/soc)
Figure J11-51 Sideslip Angle Kevpwnise tu Aileron Defloction,
One Dogree of Freodan and lhree Dejreo
I11-68 of Fivodom Casos




Chapter II
Section 16

/— One Degree of Freedom

\—"Three Degree of Freedon

N =

Only One Degree of Freedom I8 Presented

vy
1

T T T T BT B T T T

0 10 20 30 40 50 60 70 80 90
t(sec) —o

Flgure 111-52 Analog Computer Record of Time History for Pulse Aileron Deflection,
One Degree of Freedom and Three Degree of Freedom Cases

-6y




Chapter M1

L0

Scection 18
80
\\N
,:) !
A
g \\
[e] N
:S PN"ﬂ
& 40 o
g SN
2 e
2 N
ey N
hY
‘«4\
N
-2
2 ] K I - 1 -
- 40 54 ¢8A S(Ty 5¢1)
K
¢8A Tr
16.1 1
r
24, 74db | 1.695
0
)
Q
b
o = 50
=t
§oi
0
Q | —
=~ 10 ]
[3 I
"3 ) “\LL ﬁ.l
o N
z‘:g— 150 Jr” - N
. . \\~4
JI.Q' 4 |
.
.001 .01 .1 1 10

Frequency (rad/sce)
Figure T11-53 Roll Angle Respanse to Aideron Deflection,
Ouo Dogrooe of Freedon




I A S W %Y

LR D S —

¢, 2

Sa(Tad)
(-]

Chapter III
Section 16

Ll_l i I_L Ll L I I I I i Ll I 4

10 20 30 40 50 60 70 80 80
t(sec) —o

Figure 111-54 Analog Computer Record of Time Nistory for Pulse Aileron Deflection,
One Degree of Freedom

u1-71



Chapter M

Section 16
gofgl==f=L -
R
3 e
"~
\,.F
40 S
F‘\\\
a N
hv] Y
o 20 W
-
Q
TG
2 0—2;,,% | \x‘_\ﬂ,m
§ \ Py ba 8(T, s+ 1) QM
42 - 2 g
.r:l‘ 5 2C¢A ‘T\\\\
e - 20 + sS+1
. wi, @, X
0t A\ ¢
w Sa LT s? 2,
- 40 (—Tas+1)(TrS¢1)-—;—+—-sol
(an wnD
i
i Kes, Ty T | “ng, $s, | @np 4
16. 1 1
b= or
24, 14db 1.659
r@ 11070 1 1 |1.871 0047 |1.8775 |.0243
o 80.88db {.001355 [ 1.777
LEGEND |
@ One Degree of Freedom }
" . 1
® -5 Three Degree of Freedom
51 On
a
a \
9" 100 H’ ﬁL‘L\WM
of g |
5 C I Qmﬁ
Q
w
g' 15 ] ] ‘?ﬁ'.“\
> @ / \hu*:iw
ol [T 3 T/
.01 1 1 10

.001

11-12

Frequency (rad/sec)

Figure II1-55 Roll Angle Responsa to Ailerun Dofled tion,
One Dugree of Frecdun and Thioe Degree of Freedoa Cases




Chapter II
Section 16

8 ~One Degree of Preedom
. @
K Lo
IS — Three Degree of Freedom

P %
g e S

.5

\
—Three Degree of Freedom

-5\
—&’rz?
One Degree of Freedom

s

l 1 J | 4| - J S | J —d [ A 4' A J A I A ] )
0 10 20 30 40 50 60 0 80 80

t(sec; —>

Figure 111-56 Analog Computer Record of Time Nistory for Pulse Aileron Deflection,
One Degree of Freedom and Three Degree of Frecdom Superimposed,

1I-73




Chapter III

Section 16
e g
SIS \\\
8 ~L
8 Y
+ “\\
d 40 -
3 \\Nh
= S
g <
'G‘I ' \N
0 LN
A
\\
- 20
bog L
-4 §n 95, 8(Tr s+ 1)
K
¢8A Tr
{ 16,1 1
or —
24, 14db 1,695
(
"
Q
b
o - 50
=)
A
7]
Q)_ 10 | —}
E hael
Q
R ~
- 150 - N
o \\*ﬂ_
Glea i
.
.00} .01 .1 1 10

Hi-70

i'requency (rad/sce)
Figuro [11-53 Roll Angle Rospawise to Atleron Deflection,
Ono Dogroa of Freodow




Chapter 1l

3 8ection 16
1 I | [ 1 l i I 1 l R I A l i I A I S |

10 20 30 40 50 60 70 80 80
t(sec) —»

Figure 111-54 Analog Computer Record of Time History for Pulse Alleron Deflection.
One Degree of Freedom

m-71




Chapter I

I Section 16
i ‘J ;
A 1
A Ny g d
. Ry
C N
: 3 al
‘ \\
\\
™
40 \‘\
N
B 9 \:'QQL
q
e~ gﬁ
S -
+
& 0~$..K¢ ) I %Ki\\n. @
S ‘ 5a 5a S(TIr s eli S
B - 2 2 R
= s " $§§k
= - 20k + S+1
E wa w \
‘- @ o "oy "éa
¥ | E— " ¢
A 2, @_}
- 40 (T S#I)(T Sv])-——-—o—Sol
-
L K‘#SA Ts T. | “ng, $6a | “np 4
Kk ‘E" 16. 1 1
] - | or —_—
. 24, 14db 1.659
; - 1070
| (::) Lot 1 1 |q.871 0047 | 1.8775 |.0243
O 80,.88db |.001355 1,771
LEGEND |
@ One Degree of Freedom
n
-5 @ Three Degree of Freedom
5 1On
. N
a
@ @~ 100 = T
: b
: 0 ‘( !4\"}\,1\
1 g ‘\Q%
g Q
‘ g N
@~ 150 U
| N[O O[T
s 1 of

. 001 .01 ' .1 1
Frequency {rad/scc)

Figure I11-55 Roll Angle Responso to Adloron Deflec tion,
One Dogree of Freedoa and Thiee Degreo of Freedom Casos

-2




el) SOIELT GRS OGRS -

Chapter I

Section 16
'g *! ~One Degree of Freedom
:E o L
T .| ¥ /—Three Degree of Freedom .
AL
E
5 -

AN
\ ~—Three Degree of Freedom

-.5
s. /
Oue Degree of Freedon

L

Jd

LL LL]'LLLIL#IAIALJ
0 k1)

10 20 40 50 60 70 80

80

t(sec; —>

Figure 111-56 Analog Computer Record of Time History for Pulse Aileron Deflection,
One Degree of Freedom and Three Degree of Frecclom Superimposed,

1I-78




3
|
|
i
]
|
I

Chapter IN
Section 17

AIRFRAME APPROXIMATE COEFFICIENTS AND FACTORB—LATERAL TRANSFER FUNCTIONS®

B Nighy

o

A

A
8!

|
5y

_——

2.

By

| ——=———

Hi-14

e

7w oW e w

/8,40 .
D, 3

T
2

8{Ast + B33+ Cs?+ Dg + E)
Kn,<'T.5' l)(Trav l)(
(Yy e Ly v Np)

Ng

=Y (LN =LpN g - LBB/UO
(2/U,) (Lighy - LeNg)

A B, C
Rears,) = 5( Sl P an p)

*e DIVIDE BY Ko,

Ng/sy)

s
As

[+

4

L]
w -

|
|
]
|
|
|
|
| D
]

w~

Migrs,) * B(ABT 4 BB Cy) o A,8(874 B, Cy)

_'IA° ¥ Ly
|

5
lafha) ;b

o Ny ay , Ntay/sg)

* ASSUMPTIONS USED:

»?

L4

(By Ly - Ly Np) + Ly &0,

»?

(N LyLy N /U,

TO OBTAIM COMPLETE D.C,
(THIS APPLIES TC ALL THE FACTORED NUMERATOR EQUATIONS)

T 8(A,8? + B8 e Cy5 ¢ DY)

"

LT4

w2

&Ny L, - Ly N

Mors,) © Ke

2

TABLE FI1- 8 (Bheet | at

-~
-

nd

[ 14

[
-

T
ﬂ.z

Shuots)

LEVEL FLIGHT CONDITIONS
S
Lx'Lz'Y:'Yr'Yx"Yo'“o'o
(8/Ug) (L Ny = LNg)
Y, (LN ) ¢ LNy o Lyw/U,

(/U (LN, - LNy

Y, (LN - LN

W

“(Y, e Lo N (/T ) v (VT

Nears,y «Kg a(1, 80 1)(T,
A, A

GAIN OF THE TRANSFER FUNCTION

.U,

JLem Ly NI,

Ly, ¢ (Ng Ly - Ly NpYU/R
(N'ALr-L'ANr)

- N'A'L‘A III/IZZ
(Mg Ly = Ly Np) + Ly 8/Ug

KéB(TﬂRlSo 1)(TBRZB~ 1)(T5R 8+ ])

%; (M L= Ly )



Chapter ITI
Section 17

] }%: Ny ° 8(A,82 4+ B8 ¢+ C,) Nwg ) ¥ Ke8(Ty, 84D (T, 8 *n
: | . . ' ' 1
A, v N, AE+L
| ¢ T, Koo LigNg mNagly
3
' By % Yp,Lg+ Ny Ly oLy, (-N,oYy) : . 2 Ly,
"' TN
| €, v Ly Ng-N, L | tap p 2
o Tl . Np.Ly-2L
| S N : By'r ") L,loﬂ..(I,/I")
|
|
[

-ﬁ-: Newss,) « At eB8tecsen,

lA ~N, oL, lza
| v ¥ N, e, 1os
B* ‘:-N.AL’

Cy ¥ Yy(Ny, Ly - Ly Np)

Dy ¥ Ly Ny ilx;

N Y 2 {
!*; W's,) Ky (T, 8+ 1)(::,; .2,;,-;: 8 1)

R AL AL

—— e —

"wl - -VL,
w, = J (8/Uo) (Ly Ny - Ny Lip)
s LN,

( 11

I £ (LllN“ N.IL‘)

LA, Yy,Np* U, L,

] ]

I 2 JeNg Lg) (87Uo) (Ly Ng = Ny L)
a N A B - -
3‘: (ﬂ,/&u) . B( 'JB‘ * ‘18' . c.,sl 'S Dl,g . El’) ri K.!B( T.’R‘B . IXT‘,st + l)(T.’RaB . 1)( T.’R‘s . 1)
[ - 3 *
Th s v, [Ka, = ULy XNy = 3 Ngdeg Y] (LNe - LiNg)
] . . |

B ~¥ -L _y*

: N DU;Y" l'r. : ER[L YN Lp(:!'"" :“Ne’) T ]
IC.! v UO(Y‘.Nﬂ-Y'N") : ,Rl 8 r(Yy l.- ‘.Nﬁ)O r(yluLﬂ‘Yv 'l)
| |T I
|D., ¥ Uol.,(Y,N,‘ - Y:.Np)-g y:‘[,‘ I ."‘3 Lo
I . I Y
E v gY (N, L -L - | o - '
| sy € v( l' r luNr)°‘ Yl.(l‘ﬂNr Ler) |TI’R L Tu, N y'- YSN
‘ i ‘ ' W

TABLE III -8 (Bheet 2 of 2 Sheets)
mI-75




Chapter III
Section 17

Multiplying together the last three factors on the right
of (II1-90) yields:

(I“ 91) D .« 5¢(8 0[2(@1 ,%‘{ls"lrl _1..9

02 a r [_Tl Tn
1,1 a] 3 N N 1,0
ZCDanD G,‘T,.)'%D’B 0[2(9@.0 T, oanDGsoTrj [
vad L X
Ty Tr

Since the right sides of (III-89) and (III-81) must be
identically the same, the coefficients of like powers of
3 In them can be equated:

(I11-92) A«
Be2l w ..1. 1
D Op . Tl‘

c.L . Z{Da.nn<-1- -L) . u.nn

b2ty %ateh 7))
. S T |

£ T, ’l‘ “np

Both "T— and [, are generally very small in comparison

with elther of + and «p . which are of the same order

of magnitude, I view of ?hls fact, the following assump-

tions can be made:

(I11-93 11, 1,1
) ‘"En» T, T 2o '

a °pP s
(I11-92) then reduce to:

(111-94)

(111-94) can now be used to express {p, “ap, 7,
as functions of the coefficlents of the quartic in (III 893:

1,D
(m-95) LoE =¥

T, D T, C
«. <iC’
3p

p-E.D g 1 _1
(3B’ T T
b ¢ ann

The coefficients A through E of the stability quartic,
(I0-89), can be simplified by neglecting relatively small
stability derivatives, and combinations of them, in the
expresslons following (I11-86). The results are:

ou-9) e,

BY ~¥, -L,-N,  D¥ -Y,LN LN~ L,
¢
Ev "UE‘ (Nﬂl‘r-!‘ﬁNr)
o

Expressed in terms of the combinations of stability de-
rivatives given in (II1-98), (III-95) become;

(133-97) ‘
1Y, Mgy L)
T, YL N, eLNg «(e/U)Lg
1~ YoloNy + LNy +(8/Us)Lig
Tr N —x,—Lp-N,—Tl-Tl
@ @J"—' (=

Il D 2 N' 7
Approximate factors have also been derived for each |
of the numerators of the lateral transfer functions. As
in the longitudinal case, checking these approximate |
factors with the exact factors of transfer functions of a ;
conventional cruciform configuration airplane at a varlety :
of flight conditions has ylelded reasonably good agree-
ment. The approximate factors are summarized in

Table III-8.

SECTION 17 - LATERAL ACCELERATION TRANSFER FUNCTION

The lateral acceleration that would be recorded by an
accelerometer mounted at the center of gravity of an
ailrframe and aligned with the Y axis i; given by the
first relation of (I11-66), here rewritten as;

(111-98) .
ﬂ-a‘- BT =Yy by e XS
[+

From this:

(["-99) B’_UO([;,]'—U&— ¢) 'UO(Y'["Y:RBR)
o

In (1I1-99), U (/; +1) I8 the acceleration sensed by the
accelerometer because the airframe Is {n accelerated
motion, and - e® is the acceleration iensed by the ac-
celerometer because of the component of gravity which
acts along the Y axis when the wings of the airframe are

I11-78

not level,
The transfer function _J. is;

(s) ﬁ( ) ’
m-100) M%), 8)_ . u.x

( ) R B) o A4 5 ( ) [} BB ]
Expressing the relation (III-lOO) in terms of the stability |
derivatives yields: ‘

(I11-101)
3 2
a (8) _B(A'JS‘ "Bay8 'C‘:s 'D'xs ’E'.Y)

5, (8) D,




re

1 A.’-UOY; (1-AB))

-,'UoY;, (-Lp-Nr-Ale-BlLr)
=~ U [Ng* LN, »YBLJ»UY [LsBi]
*; n_ TR [ @ »AIU>»NL -L “J

i .uv[ (.& N)»N (IU
E‘,.g{Y;n[(LﬁNr-NBL,) ‘Yy(NsnLr ):'}

-101), numerically evaluated for the flight condition in

» this section, the effects of variations in individual
Bability derivatives on the natural frequencies and
Rmping ratios of the lateral equations are discussed.

pme comments were made in Section III-8 concerning
Bethods of obtaining such variations physically and on
e significance of the results obtained from this type
analysls The material contained in Section III-8
hould therefore be read before that presented here .

Mhe values of the stability derivatives for the base case
Bed in the following analyses are contained in Table
i1-9.

1titude (ft) 0 N, ~. 0937
eight (1bs) 38, 100 N - 00616
ach Number [ '

e Airspced (ft/sec) 669, 7 L, ~4.706
AT, /1 .0358 N, 3. 5581
B,«1,,/1,, , 0259 Y, -, 1327

L, , 2485 Y, -, 00009
L, - 1.7605 Y, L0012
Table III-9

The approximate factors of the lateral characteristic
quation are rewritten below for convenience in refer-

nce: £
0, (Vabe Ly

m-104)
] Ty "Y LN +L N g L,
0

]

' 8
m-105) 1 Yol t LoNa 0, Lo

Tn N’ﬂ
0-106) "oy, 1N,
! 1
I-107) -Yv-L,-N,-le T
o~ ZJNﬁ'

Figure III-58 shows that the effects on the lateral fre-
quencies and damping ratios of varying Y, through values
jin the vicinity of the base value, Y, =- 0. 1327, are neg-
ligible; except that {, , the dutch roll damping ratio,
takes on larger positive values as Y, becomes more
negative. (III-107) shows that this variation in Y, is to
be expected. The quantity Y also occurs in the numera-
tor of the expression for 'I-‘—’ (I11-105), and inthe de-

, (11-104); but the v, term s

fnominator of that for =~ 7
k 1 }

much smaller than those containing Lg and Ng
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Table III-6, becomes:

(I111-102)
ay(8) 7,637(s+0.000725)(s+1,708) (5+2. 551) (5-2. 468)
§p(s) (s -.001355) (s + 1.777) (s% + .0912s + 3.525)

and, in the KG(s) form, becomes:

(000725 )(l 705 )(2551 )(2 468 i

3p(8) ( ( ) (0 0243)‘,.1
001355 ) .71 (1 877* )

1.877
Figure III-57 is the Bode plot of (III-103).

(111-103)

a,(s)

SECTION 18 - EFFECT OF SINGLE DIMENSIONAL STABILITY DERIVATIVE VARIATION

in these

expressions, and hence the effects of varlatlons iny, on

1 and 1 are unimportant. Since, in addition, unD is
T T
not a fuhction of Y, , moderate variations inY, are

appreciably reflected only in {,.

Figure I11-59 shows the effect of Y  which is generally a
very small number and consequengly does not appear in
the approximate factors. Y, also is not very amenable
to artificial variation. It has been included here for the
sake of completeness.

Figure I1I-60 shows the effect of Y, which, like Y, is
generally a very small number and therefore doe's not
appear in the approximate factors, but it is somewhat
more susceptible to artificial variation. As Y, becomes
more negative, the dutch roll natural frequency in-
creases in Y, cause the dutch roll to split into two real
roots, one of which is divergent.

The effects of changing L, are indicated by the curves in
Figure IlI-61, which contains plots of:Fl. , the reciprocal

of the roll time constant; 'I_‘L the recip?‘ocal of the spiral

3
time constant; {,, the dutch roll damping ratio; and
@ s the dutch roll natural frequency, as functions of L.

It is shown by this figure that as L, moves in the neg-
ative direction,i‘l_ and L both increase, but that ¢,

8
tends to move toward more negative values. It can be

seen that .,  does not depend upon L.
np s

These variations with L; are confirmed by examination
of the relations which set forth the approximations to
these parameters, (III-104) through (I1I-107).

(I11-105) shows that the approximation to 1’~1— should in-

crease as [, becomes more negative, since'the quantity
- (g/U )/Lﬁ is a positive number increasing in magnitude

when Lﬁ is negative and its numerical value increases.

(I11-104) can be used to show that the behavior of r, as
8

Lgsmoves in the negative direction, is similar to that
of _Fl. L, occurs in both the numerator and the denomina-
R
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lr of the approximate expression for ’TL ; however, the

ﬁm inlis in the denominator is smali in comparison
jith the other terms there, so that variation of Ly has
ttle effect upon the value of the denominator. For the
pase case under consideration, the numerator is positive
jnd the denominator negative; therefore at the base con-
’ltton, Tl is negative. This checks the conclusion that

e approximate spiral mode is a divergence. As L, be-
fomes more negative, the numerator quantity decreases
n magnitude and becomes less positive. The over-all
ffect Is that asL; moves In a negative direction, TJ- be-

bomes more positive; and eventually, as L, becomes
arge enough in magnitude, but still of negative sign,
Bhe divergence becomes a subsidence.

The increase in the dutch roll damping, {,, as l; moves
bositively, can be inferred from a consideration of
{11-107) and the remarks above concerning 1/T, and 1/T,.

III-107)1s of the form ¢« l@ -T -T- where A and B
]

for this base case) are positive quantities which are
ot functions of Ls; 1/T, and 1/T , of course, depend

jupon L,

8ince 1/T,is a negative quantity near the base value of

.1 1.1
L, {, can be written equivalently as ¢, A@ ' |T.| T,,)
As L, becames more negative in this region, ll/T.‘ be-

feomes less In magnitude; under these conditlons, { de-
ereases in value,

The conclusion may then be drawn that as L, moves in
fthe negative direction, (D tends to become less due to
the variation in 1/T, ; that is, a decrease in the re-
Feiprocal of the splral tlme constant tends to increase
ithe dutch roll damping.

‘By similar reasoning, taking into account the fact the
is a positive quantity, an increase in the value of .1

As stated‘

ends to decrease the dutch i‘oll damping.
occurs as L, becomes

tabove, such an increase in

I more negative.

jSummarizing, it may be seen that as L, moves in the

bnegative direction, its varlation tends to increase ¢,

through its effect on 1 and to decrease {, through its
T,

1 s
effect on T

I T L T I L  LITT T

Figure 111-61 shows thatfor the same variation {n L, ,
j the mdbmtude of the change in 11. {s greater than that

in T ; therefore, the net effect on {p is that the dutch

rolldamplng ratio increases as L; becomes more nega-
tive,

 The effect of changing L, Is shown in Figure III-62. It
appears that L has a rel'mtlvely small effect on all the

perameters except _T_., the reciprocal of the roll timo
r
constunt, which {ncreases linearly ag L, moves in the
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negative direction,

(III-105) clearly shows the reason for this change in 1 |

since the equation is of the form: % =AMy +B where "A
and B are combinations of other stability derivatives but
do not depend upon L, . For the base case, A is negative,
so that becomes more positive as L, moves in the

T
negative "direction.

The effect of changing L, is not reflected in the approxi-
mation for { because L and TJ» essentially cancel out

of (I1I-107) if all quantlt\es involved are held constant
except for L, . That changes in L. have some effect on
can be predicted from (II-104), *but the effect of vary-

irg L, In this relation is small.

Flgure I11-63 shows that the principal effect of changing
; Is to vary .L the reciprocal of the spiral time con-

stant. As L, moves in the negative dlrection, i‘_ moves
s

positively;that is, as L becomes more negative, the
spiral mode becomes more unstable. This can be seen
from (IM-104): the denominator of the expression on the
right of this relation is negative in almost all cases,
and as L becomes more negative, the quantity N L,
and therefore the numerator, also becomes a negative
number of larger absolute value, The ratio of numerator
to denominator, that 18,1/T,, then becomes a positive
number of increasing magnitude as L becomes more
negative,

The effects of changing N, are shown in Figure 111-64 .
The principal effect of increasing N, is an increase in
the Dutch roll natural frequency. (ILII-108) also indicates
this trend.

The term LN, in the numerator of (III-105) and also in
the denominator of (IlI-104) is very large, in comparison
with the other terms in these expressions, for values
of N In the vicinity of the base value N, =3,5581, or
when the absolute magnitude of N farge Con-
sequently, for these values of Ng4 L ,Ng essentially
cancels out of both (I1I-104) and (IH-105), tndlcattng that
only the dutch roll natural frequency and damping ratio
will be appreciably affected by variations of N, around
its base balue. Figure III-64 shows that the dutch roll
damping ratio increases with a negative movement of N,
This trend is also indicated in (111-107).

Figure I1I-65 shows the effects of varying N, . Since

is generally very small, it does not appear in the
appxoxlmate factors. N_ is u:-ually negative; however ,
at fiight near the stall, it can become posmve ’Ihe
most important effect of an increase of Np is to cause
the usually very stable rolling mode to become divergent.
As N, becomes more negative, the dutch roll damping
ratio decne.\eeb toward instability, and L and the dutch
roll natural frequency increase. Ty

The effects of changlng N, are shown in Figure I11-66 ,

Changes In N« the vicinity of its base value are re-

flected principally in the dutch roll damping rutio and

in the reciprocal of the spiral thme constant, L . Itcan
T
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e seen that {, increases linearly as N, becomes more
hegative in the vicinity of {ts base value. This effect
8 also plalnly indicated in (HI-107),

N, moves negatively, the spiral mode becomes more
table N, enters into both the numerator and the de-
omlnator of (II-104), but since L N; is generally much
greater thany LoNe small changes {n N_ do not ap-
breciably affect the denaminator on the right of (III-104).

Pn the other hand, since N L. and -L;N,are generally
of the same order or magnitude and are of opposlte sign,
omparatively small changes in N, become important
there; hence the effect on the spiral mode of changingn,_

fean be determined by consideration of the numerator
alone. This numerator becomes more negative with
similar vartation in N_, Since the denominator of (III-

this section, the approximate factors of the lateral
haracteristic equation are expressed in terms of the
basic non-dimenstonal stabllity derivatives and other
parameters of the alrframe and the flight condition .
The usefulness of approximate factors in this form is
discussed in Section III-9,

To derive the desired expressions, the appropriate
quantities of (II-191) are substituted into (II1-107). The
approximation for {; glven in (I11-107) 1s simplified to:

p X"
2JN‘.j

(m1-108) oot

(I1I-108) was shown In Section I1I- 14 to be a relatively
good approximation to the dutch roll damping ratio.

i Performing the above substitutions yields:

F(117-109
Wi 109) (C"ac'p Ci 8 ")

- ()
Tn ° [(I/Qu,)c,ﬂclpcnr'clpcnﬁ

4
jIn this section, traces of the solutions of the equations
jof motion obtained from an analog computer are pre-
 sented; these records show the effect of flight condition
Eon the transient response of an airplane. Also included
kare some analog computer solutions showing the effects
-of single dimensional stabllity derivative variation, The
- stabllity derivatives used in this analysis are theoretical
Fvalues calculated for a hypothetical high-performance Jet
f airplane of conventional cruciform configuration.

| Figures 111-89, III-70, 11I-71, and III-72 show the effect
 of Mach number variations at constant altitude. Several
 trends are indicated in these plots, The dutch roll
natural frequency inereases with Mach number while
the dutch roil dumping ratio remains roughly constant,
At least for subsonie Mach numbers, these trends are
generully reliable, and c"r and Cn‘j can be considered

woy) @7 (k"/ty’c,g
SECTION 20 - EFFECT OF FLIGHT CONDITION ON THE LATERAL TRANSIENT
RESPONSE OF AN AIRPLANE
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104) is negative for the base case, 1. increases asN,

becomes more negative. Therefore, (III- 104) and Figure
I11-68 agree as to the effect on T-L of varying N,.

Figures 1I[-687 and III-68 show that small variations in
the values of iz and iz do not have any appreciable

I
effect on any of ‘the paranllzters of the lateral character-
istic equation.

In summary, good correlation exists between the lateral
appraximate factors and the curves presented, However,
it should again be emphasized that caution must be used
in attempting to extend these results to other flight con-
ditions, particularly {f they differ coneiderably from
the one used in this section.

SECTION 18 - APPROXIMATE FACTORS EXPRESSED AS FUNCTIONS OF THE BASIC
NON-DIMENSIONAL STABILITY DERIVATIVES

(111-110)
2
le c,c, e 1(4)(k-li)c
_l_N-_l__u_ﬂ[un aterr te Uy T\ b 8 ]
T~ 4f(k“) c"ﬁ
I11-111
( ) N l b_ _2! cl‘lﬂ
“np K, .
(I11-112)
{ 2-1(—h—. ___nl.—_
8lk,, ™
C
2 "
where:

roughly constant. Thus, (III-111) and ({II-112) can be
used to predict that w, increases with Mach number

D
and that { . 1s independent of Mach number,

Figures II1-70, 1I1I-73, and 1II-74 show the effect of
altitude variation at constant Mach number, These
graphs indicate that the dutch roll damping ratlo de-
creases with increasing altitude and actually becomes
unstable at 80,000 feet. This effect can be predicted
from equation (III-112): since the density appears in the
numerator, {, decreases as the altitude increases.

Figures 111-75, I1I-76, and III-77 show the effect of
changing N_ and indicate that the principal effect of N

in becoming mu. ¢ negative 18 to increasothe dutchrul[
damping raflo. This result cheeks with tho conclusion
drawn {n Section I111-18,
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gures IM-78, II1-79, and III-80 show that the main
fect of increasing N, is to increase the dutch roll
ptural frequency. Tﬁle result also checks with that
pund {n Section IIF-18,

j summary, the basic purpose of presenting the material

Chapter Il
Section 20

contained in this section is to demonstrate that much of
the information concerning the dynamic response of an
airplane can be obtained mathematically only by rather
lengthy computational methods and that the same in-
formation can be rather simply obtained with the aid
of an analog computer,
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i. therefore very important in designing an
. airframe-autopllot-controls system, Chapter IV dis-
4 cusses stability derivatives in greater detail than does
. the preceding material of this volume, so that the nec-
k. essary background for an appreciation of thelr effects

CHAPTER IV
DISCUSSION OF STABILITY DERIVATIVES

BECTION 1 - INTRODUCTION

’ In the preceding chapters of this volume, the coefficients
. In the airframe transfer functions have been shown to
3 depend almost wholly upon the stability derivatives; that

is, upon aerodynamic partial derivatives. The numerical

b examples previously cited show that small changes in
}. the values of some of these derivatives can produce pro-
. nounced effects on the airframe response to disturb-
, ances,

A knowledge of the values of stability derivatives is
integrated

on airframe response may be acquired.

. The plan for this chapter is first, in Section 2, to dis-

cuss the various forms of stability derivatives and to
show the importance and application of each form; next,
{n Section 3, to treat each derivative separately and In
detall; and f{inally, in Sections 4 and 5, to enumerate and
to discuss the various factors that affect the values of
stability derivatives, such as airframe geometry, Mach
number, and dynamic pressure,

No attempt is made here to provide a general handbook
for evaluating or estimating stability derivatives with a
particular airframe in mind. Present day design trends
are toward aircraft of unconventional geometry which
are operated in the transonic region and subjected to
great aeroelastic effects. The resulting complexity of
factors involved in particular applications makes it
necessary to consult many detailed references, and at
present the services of a competent aerodynamicist are
required,

SECTION 2 - THE DIFFERENT FORMS OF STABILITY DERIVATIVES

Preceding sections have shown that the requirements of

: particular applications often make it convenient to deal

with the equations of motion in several different forms .
The equations may be dimensional or non-dimensional in
conjunction with different axis systems, and a corre-
sponding set of stability derivatives is associated with
each form of the equations.

The stability derivatives used in the design stage of an
airframe are usually obtained from various unrelated
theoretical reports, from wind tunnel data on-models,
and from flight test data on simlilar full-scale aircraft.
Consequently, the available data are found in varying
forms and may be expressed with respect to any one of
the three common axis systems. It is therefore ex-
fremely important, when making use of these unrelated
data, to examine the form of the stability derivatives
given in each source and to make the conversion, {f
necessary, to the one consistent form which corresponds
to that of the equations of motion to be used in setting
up the airframe transfer functions,

{(a) DIMENSIONAL AND NON-DIMENSIONAL FORMS

In the literature relating to alrcraft stabiiity and control ,
four different forms of stability derivatives appear, but
little or no distinction in terminology is made among
them; all are referred to as 'stability derivatives® re-
gardless of the particular form. For purposcs of dis-
cusslon and for clurification, it is convenient to illus-
trate what these four gencral forms are as they are used

in thls manual.

Example 1. Basic dimensional stability derivatives:
L
op

Example 2. .Dimensional stabllity derivative parameters:

o) (5

Example 3. Basic non-dimenslonal stability dertvatives;
C, " ok (a:és) 2L
> 3(bg) (%)
Example 4. Non-dimensional stability derivative para -
meters:;
A IAWA AL
b (4\) (k,) Cip

It may be seen from the examples that the dimensional
form (examples 1 and 2) is concerned with direct forces,
moments, and velocities, whereas the non-dimensioi:al
form (examples 3 and 4) is concerned with force and
moment coefficients and with non-dhmensional velocities
(e.g., pb/2U is the non-dimensionalized form of the
rolling velocity, »). It may also be seen that the basic




Chapter 1V
Section 3

stability derivatives (examples 1 and 3) do not involve
moments of inertia, whereas the stability derivative
parameters (examples 2 and 4) are functions not only
of moments of inertia but of the basic stability deriva-
tives. Conversion relations between these four general
forms and also specific mathematical definitions of
individual derivatives are given in Appendix IV-1 (Tables
1IV-1 to IV-4),

It must be emphasized that the specific notation and the
specific definitions used in this manual are not neces-
sarily employed by all writers on the subject. For
example, Durand,in a baslc aerodynamic reference work
(Reference 4), uses the notation L, to signify the partial
derivative ©9L/3p, whereas most of the present-day
writers use L; (or Lg ) to represent the stability de-
rivative parameter (1/1,)(%L/9p), On the other hand,
almost everyone uses the same notation for such basic
non-dimensional stability derlvatives as C,n, C‘*a , and

C

LN

Today only two of the four forms listed above appear

to be of practical importance; these are the basic non-

dimensional stahility derivative (e.g., C; ) and the
P

dimensional stability derivative paramater (e.g., Ly ).

The basic non-dimensional form {(c, ) is important
P

because correlation between the performance of different
airframes or the same alrframe at different flight con-
ditions is most eastly attained with these stability de-
rivatives; as a result, aerodynamic stability derivative
data from wind tunnel tests, flight tests, and theoretical
analyses are usually presented in the basic non-dimen-
sional form.

The dimensional stability derivative parameter form
(L, ) is important because stability derivatives in this
form can be used directly as numerical coefficients in
the sets of simultaneous differential equations describing
the dynamics of the airframe, when the equations are
based on real time. Thus, stability derivatives in this
form are useful in determining the analytic transfer
functions of the airframe and in setting up the mathe-
matical model of the airframe on an analog computer in
preparation for synthesis with auto-pilot and controls
systems,

In this volume, then, most of the discussion dealing with

the evaluation of stability derivatives makes use of the

basic non-dimensional stability derivative form ( ¢, ),
P

SECTION 3 ~ DETAILED ANALYSIS OF THE BASIC NON-DIMENSIONAL DERIVATIVES

This section glves a short physical explanation of how
each stability derivative arises, its importance in the
overall stability and control problem, and a qualitative
estimate of desirable values for design purposes,

The plan is to consider each derivative in turn, starting
with the longitudinal derivatives pertaining to the drag,
lift, and pitching moment coefficients, Cp, C., and
C., and then progressing to the lateral derivatives re-
lated to the side force, yawing moment, and rolling

Iv-2

and the discussion dealing with airframe transfer fu
tions, with airframe synthesis with other componed
and with analog computer techniques makes use off
dimensional stability derivative parameter form (L

(b) STABILITY DERIVATIVE REFERENCE

In addition to establishing the form of stability deriv
to be used, any particular form of the equatlon
motion also establishes the reference axis systend
the associated stability derivatives. For example,
dealing with equations of motion based on the stab
axis system, stability derivatives based on this s
should be used. Similarly, when dealing with equak
of motion based on principal axes, stability deriva
based on principal axes should be used,

It was shown in Chapter II that the stability axis sy
is probably the most generally useful, mainly bec
the evaluation of derivatives from wind tunnel tests:
from theoretical considerations is easier with this §
system.

It must be remembered, of course, that there are 8
instances where other axis systems are used as bf
for evaluation, "Wind tunnel" axes, for example,
usually employed as the reference system for obta
derivative data in low speed wind tunnel tests. O
other hand, for high speed wind tunnel tests, stab
derivative data are usually obtained with respect to§
axes criented by a convenient longitudinal refer
line of the airplane, such as the fuselage reference
or the wing chord line. Again, in the supersonic raj
theoretical derivatives are also easier to evaluate §
respect to body axes for which the x-axis lies par
to the wing chord. Finally, stability derivatives obt
from flight tests are usually oriented with resped
body axes;here the x-axis is determined by the ins
ment alignment in the airplane,

If, as in this volume, the stability axis system isch
as the basic system. then stability derivative data b
on "wind tunnel" or on body axes should be conver
the stability axis system. Whether this conversia
actually required for any particular case depends |
the particular axis system involved, the magnitud
the angular displacement between the systems, ang
desired accuracy of the stability derivatives for]
stability axis system., As a general rule, howeves
i5 necessary to make sure that all data are expres
in the same axis system,

moment coefficlents, C,, C,, C;.

It is apparent from this plan that certain limits
been imposed upon the scope of this discussion, A m
complete analysig would include a detailed discus
of the effect of airframe configuration, Mach numh
aeroelasticity, unsteady flow, etc., upon each der
tive, rather than the general discussion of such fach

which appear: u Section 4 of this chapter. In addit ] )
a more complete analysis would include means of ¢ e
: i

i

|
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| mating values of stability derivatives for airframe con-

flgurations in the preliminary design stage, and finally

-it would supply a means of evaluating the probable ac-

curacies of these values, Only with a complete know-
ledge of all the variables that affect stability derivatives

| could the generalized problem of an optimum ajrirame-

autopilot-controls system be solved.

Even if sufficient information were available for a com-

| plete detailed analysis of the basic non-dimensjonal
- stability derivatives applicable to all airframes operated

at any flight condition, the final product, although it

I might be of great benefit to the aerodynamicist, would

be far too unwieldy and detailed to be of use to all those
concerned with an integrated airframe-autopilot-controls

| system. It is hoped, therefore, that the following pages

succeed in their basic purpose of providing a physical
"feel” for stability derivatives. This purpose may seem

j modest in the light of the overall problem, but if it is
¥ achieved, considerable progress will have been made

in broadening the outlook of the various specialists con-

| cerned with this problem of optimization.

- It is appropriate at this point to enumerate the specific
- limitations in the analysis and interpretation of the
i material in this section;

1. The.derivatives are discussed with reference to
jet fighter type aircraft having wings of aspect ratio
less than 6.0 and operating up to Mach numbers of
approximately 2,0. Some of the statements and con-
clusions may not be entirely applicable to bomber
type or high aspect ratio wing type of aircraft.

2. Unless otherwise mentioned, all statements relate
to an airframe alone or to the airplane plus human
pilot. Some of the statements do not necessarily
apply to the airframe-plus-autopilot combinations.
3. Unless otherwise mentioned, all statements are
for an inelastic airframe.

4. Unless otherwise mentioned, all statements are
for an airframe in the aerodynamically clean con-
figuration.

5. Unless otherwise mentioned, all statements are
for unstalled flight.

In addition to recognizing these specific limitations upon
the following material, it may be helpful if certain terms
are explained before proceeding with the discussion of
the stability derivatives themselves.

In certain instances a distinction is made between direc-
tional and lateral modes. Directional modes involve
sideslip and yawing motion only. Lateral modes, used
in this particular sense, involve rolling motion only .
However, both directional and fateral modes are involved
in the so-called lateral motions used in a general sense
to distinguish them from longitudinal motions.

Reference is made to the two classes of stability de-
rivatives: static and dynamic, The static derivalives
arise from the position of the airframe with respect
to the relative wind, and include such derivatives as

chu . (:“‘u’ C"ﬂ, and C,p . The dynamic derivutives

arine from the motion (velocities) of the airframe, and

Chapter IV
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include such derivatives as C_q y C c, »and ¢, .
4 »

»e »
Although the derivative C"ﬁ is discussed, no reference
is made to the associated derivatives C,,‘i and c,‘é be-

cause little is known about them,

In discussing desirable values of stability derivatives,
there are usually three considerations involved: per-
formance, stability, and control. In selecting values for
derivatives where these three considerations have mu-
tually conflicting requirements, it should be pointed out
that in present design practice performance congidera-

tions come first, followed by contral, and then stability ,

qgs

Figure IV-1 Equilibrium Drag Coefficient
C
L

Although not referred to as a stability derivative in the
usual sense, the equilibrium drag coefficient, Cp , I8
the main contributor to the dimensional stability de-
rivative parameter X, the change in fore and aft force
with forward velocity, and a minor contributor to the
dimensional stability derivative parameter v **, the
change in vertical force with angle of attack.

In general, any portion of the alrframe in contact with
the external airstream contributes to the airframe drag .
The fuselage, engine nacelles, external stores, tail
surfaces, and internal engine ducts all contribute rel-
atively small increments in comparison with the wing
which contributes the major portion of the drag, espe-
cially at high angles of attack or high Mach numbers.

By definition, the drag coefficient is always measured
along the direction of the relative wind; hence the equi-
librium drag coefficient is measured along the negative
equilibrium x-axis in the stability axis system (Figure
IV-1) and 15 always positive in sign. In contrast, it
should be pointed out that the derivative X, is at all

times measured along the x-axis and is always negative
in sign,

As far as the performance of an airframe is concerned—
range, speed, rate of climb, etc, —the drag coefficient
is one of the most important parameters. 1t is apparent,
then, that a desirable value of C, is one which is as

sul ,
« x,-0 Sl [ -C, - C"..I

. sU v
SESVE Fl AU
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small as possible.

On the other hand, when airframe dynamics are con-
sidered, C, is the main contributor to the damping of
the phugold mode, and the larger the value of Cp, the
better the damping. However, flight experience has
shown that the damping of the phugoid is of little im-
portance in determining satisfactory flying qualities of an
alrframe as far as the pilot 18 concerned. Clearly then,
performance requiremsants rather than flying qualities
should dictate the design value of C,.

Figure 1V-2 Drag Coefficient Change Due to
Variation in Forward Velocity

Cc
D,

The stability derivative Co, is the change in drag coeffi-

clent with varying forward velocity, the angle of attack
and the altitude remalining constant, To non-dimen-
sionalize this derivative, Cp, in this manual is defined

mathematically as (U/2) (3c,/3u), a term which appears
as a part of the dimensional derivative parameter X,* ,
the change in fore and aft force with change in forward
velocity,

Cp, can arise from two sources: Mach number effects
U

and aeroelastic effects. In most cases CL,u arising from

the latter of these s zero or very small and can be neg-
lected, ¢, arising from Mach number effects i8 very
[H

small for low subsonic Mach numbers but sometimes
reaches a considerable positive value near the critical
Mach number of an airframe (.8<M<1,0), where a large
increase in drag occurs.

The effect of a positive value of CDu on longitudinal dy-

narics I8 an increase in the damping of the phugoid
mode., However, as painted out under the discussion
of C,, this damping {s believed to be of little importance
as far as satisfactory flying qualities of an airframe
are concerned. From a performance viewpoint, the
smullest possible value of Co, is desirable because of

the low rise in drag associated with It,

Until the relatively recent advent of high Mach number

V-4

flight, the derivative C; was scldom mentig

stability and control literature. There 15 evid

the current literature that some considcration
given it, but until further results are publishe
{initive information regarding the importance of]

longitudinal dynamics will not be available,

\ A Drag

W¥ind before

disturbance oy s
X ' ~ ‘
Wind after E Y > T
disturbance

Co. =2€0 -1 2 (Drag) lz
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Figure IV-3 Drag Coefficient Change Due}
Variation in Angle of Attack

c
Dn

The stability derivative ¢, is the change in drag|

cient with varying angle of attack, When the i
attack of an airframe increases from the equll
condition, the total drag will increase; hence §

normally be positive in sign. By far the largd
tribution to Cp comes from the wing, but thé

small contributions from the horizontal tatl
fuselage. It is to be kept in mind that drag 18|
measured with respect to the relative wind and
the x-axis In the stability axis system. Howe
dimensijonal derivative parameter X,*% of which

a part, is measured along the x-axis.

The derivative C°¢ {8 usually unimportant ina

dynamics, It affects mostly the phugold mode,
a decrease in C, Increases stability; howeve

effect is slight, mainly because the changes in
attack occurring in phugoid motion are small,

3

4
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L

The stability derivative C, is the change in lift coeffl-

clent with varying angle of attack. Cl“n {s commonly

known as the "lift curve slope." When the angle of attack
of the airframe is increased, the lift force will increase
more or less linearly until the wing stalls. The deriva-
tive CLu is therefore always positive in sign at angles

of attack below the stall. It should be pointed out that
the aerodynamic lift force by convention is always
measured perpendicular to the relative wind (flight path).

The total airframe C,_ 1s made up of contributions from

the wing, the fuselage, and the horizontal tail, Ordi-
narily the wing accounts for about 80% to 90% of the total
C,,a, although the wing contribution becomes less if the

size of the fuselage is large in comparison with the size
of the wing.

The derivative CL,. is very important to the equilibrium

flight condition of an airframe; it is also important in
dynamic considerations.

In the equilibrium flight condition, a high value of Cl"n is

desirable because, fora given angle of attack, the air-
frame with the higher value of CLa will usually have

a lower drag, and therefore better performance. C, is

also importaut tn establishing the attitude of the air-
frame at landing and take-off; when the value of C, is
a

low, the airframe must land and take-off at a relatively
high angle of attack. If this has to be done, pllot visibil-
ity is impaired, and difficulty in designing the landing
gear is aggravated.

As far as dynamic stability is concerned, this derivative
makes an important contribution to the damping of the
longitudinal short period mode for all aircraft and
especlalily for tailless aircraft because in this case
almost all the damping of the short period mode comes
from c, .

A high value of ¢, would therefore be desirable on all

A Lift

——>
Wind
Befare
Disturbance W
"’x7’ l 2
Wind After C AL 20 J(Lift)

Disturbance La ~37a¢; @3¢ 2 &
3(3u)

Figure IV-7 Lift Coefficient Change Due to
Variation in Rate of Change of Angle of Attack
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counts were it not for the fact that such values of ¢,
. U

necessarily associated with a high aspect-ratio unsy
wing--a configuration which is contrary to present des§
trends; consequently this high ¢, s not always real

in practice.
Cu;

The stability derivative C, is the change in it coetf
cient with variation in rate of change of angle of at o
This derivative is sometimes referred to as Cupr
change in lift coefficient with vertical acceleration,
relation between these two forms is given by Cha'u

]

sincedaaw/U. These derivatives arise from a so-call

“plunging" type of motion along the z-axis, in which |
angle of pitch, 8, remains zero during the disturbantj

The derivative Cl-a arises essentially from two i .‘

pendent sources: an aerodynamic time lag effect
various "dead-weight'" aeroelastic effects. For
speed flight, CLa arises mostly from the aerodynad

lag effect, and its sign is positive. For high -‘
flight the sign of CL‘ can be positive or negative, @

pending on the nature of the aeroelastic effects.

The horizontal tail of a conventional airframe is s
mersed in the downwash field of the wing and is mounlj
some distance aft of the wing. Whenever the wing undd
goes a change in angle of attack, the downwash {ig
is altered; and since it takes a finite length of time |
fore this downwash alteration arrives at the tail, the
sulting lift on the tail lags the motion of the airer;
and creates the derivative C,,» Even for tailless al

craft CLé apparently has a value due to the fact thati”

wing must accelerate the air mass in its path as it
celerates {(apparent mass effect). ¢

Since the type of motion under consideration is an 8§
celeration (%), C,, can also arise from aeroelas

effects such as wing twisting due to the dead wei
moment caused by nacelles projecting in front of §
wing, and from fuselage bending caused by the de
welght of the aft fuselage and empennage section, bg
of which change the effective angle of attack of the ho!
zontal tail.

The derivative CL& is usually unimportant in longitud

dynamics, The effect of C,. on longitudinal dynamlc!

essentially the same as if the airframe's mass or iner{
were changed in the equation relating the forces int
z direction. This effect is very small, and for (}
reason CL‘ is sometimes neglected in longitud 3

dynamic analysis,

bl Skl B
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Figure IV-8 Lift Coefficient Change Due to

The stability derivative C,, is the change in lift coeffi-
cient with no change of angle of attack of the airplane
as a whole with varying pitching velocity. As the air-
frame pitches about its center of gravity, the angle of
attack of the horizontal tail changes, and a 1ift force is
developed on the horizontal tail producing a contri-
bution to the derivative CLq. The sign of this contri-

bution is positive.

There is also a contribution to 0»':,_‘l because of various

"dead weight" aeroelastic effects. Since the alrframe is
moving in a curved flight path due to its pitching, a
centrifugal force is developed on all the components of
the airframe, This {force can cause the wing to twist
as a result of the dead weight moment of overhanging
nacelles, and can cause the horizontal tall angle of attack
to change as a result of fuselage bending due to the
weight of the tail section,

In low speed flight, cl-., comes mostly from the effect

of the curved flight path on the horizontal tail and its
sign is positive, In high speed flight the sign of C.,q can

be positive or negative, depending on the nature of the
aeroelastic effects.

 A(Lift
( )Tall

Wind

¢ TR It f 1
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Figure 1V-9 Lift Coefficient Change Due to
Vasriation in Elevator Deflection

Variation in Pitching Velocity

In past experience, the effect of (:l"l on longitudinal sta-

bility has usually been very small and it has therefore
been neglected in dynamic analyses, but because of the
possibility of great aeroelastic effects, especially at high
Mach number {light, the magnitude of Cl,q may be In-

creased considerably and it is nat certain that it can be
neglected.
CL'E

The stability derivative CL‘ is the change in lift coeffi-
g

cient with changes in elevator deflection. When the
elevator is deflected upward a negative increment in
1ift on the horizontal tail results; hence the derivative

c,"l is normally negative in sign.

On conventional aircraft with the horizontal tail mounted
at an appreciable distance aft of the center of gravity,
C,,. is usually very small and its effect is unimportant;
]
however on tailless aircraft, ch' is comparatively
B
large, and cannot be neglected.

(Aerodynamic)

: I Sg (Trim)

Figure 1IV-10 Aerodynamic Pitching Noment Coeffi-
cient in Equilibriun Flight

G

C, is the aerodynamic pitching moment cocfficient about
the ¢.g. required to balance the momoent coefficient due
to thrust when Ge afrframo s in the equilibrium fli;ht
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condition, It is not usually referred to as a stability
derivative although it appears in the dimensional stability
derivative M,*.

It will be shown later that the thrust moment coefficient
is given by C,,T-Tz,/ch where T is the thrust and z, is

its moment arm about the c.g, (Figure IV~10). In order
to balance out this thrust moment coefficient in the
equilibrium copdition the required aerodynamic moment
coefficient (which would come mostly from a trim ele-
vator deflection) must be the same magnitude but of
opposite sign:

Tz
o= Coyn- ii_s_cI:

The sign of C; |s negative when the line of thrust is be-
low the c.g.

From the above expression it is apparent that the value
of C, will be zero only if the thrust is zero (gliding
flight), or if the thrust moment arm, 2z;, is zero, It
{s important to point out that in most of the literature
dealing with the classical equations of motion gliding
flight has been assumed, and C, has therefore been
zero. When considering powered flight, hawever, the
equilibrium value of C, is not necessarily zero, and
should be included in dynamic longitudinal stability
studies.

The importance of C, in airframe dynamics has not been
definitely established, It principally affects the longi-
tudinal phugoid mode where positive values of C, will
tend to decrease the pertod of the oscillation,

M
b
_ U/ 3Cy
C"‘u.-_Z_(BU z

Wind

Figure IV-11 Pitching Homent Change Due to
to Variation in Forward Velocity

C
4

The stability derivative CIIu is the change in pitching

moment coefficient with variation in forward velocity,
angle of attuack and altitude remaining constant, In order
to non-dimensionalize this derivative, C.,n in this volume

is defined as (U/2)(3C,/3U),

The magnitude of C"u can vary considerably and the sign

can change, depending upon such factors as the air-

‘M -p..S_U.g
u 1

, Cpt Cn“]

frame's geometry and its elastic properties, and]
Mach number and dynamic pressure at which it is flyj
This derivative can arise from three sources: thrusf
power effects, Mach number effects, and aeroels
effects.

In the past, the literature has treated Ca, only &

power effect arising from the propwash of propell
driven aircraft, Today, however, because of the
of jet engines and the associated alleviation of po
effects on dynamic stability, the C,,“ from thrust eff

is probably small. (The thrust effects themselves}
discussed more thoroughly in part 5 (g) of Section:
On the other hand, the contributions to Ca, due to M

number and aeroelastic effects are becoming more]
more important, and it {s belleved that these effg
should no longer be neglected when evaluating §

The importance of the derivative Ca, in atrframe dys

ics has not been definitely established. It prlncl
affects the longitudinal phugoid mode, where posi
values of C, wlll tend to decrease both the period

the damping of the oscillation. This effect can be
quite objectionable, especially when the phugoid m¢
is lightly damped. It appears therefore that zerg

at most, very small values of c, are desirable, }
u
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Figure IV-12 Pitching Noment Coefficient Ch;\
Due to Variation in Angle of Attack '
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The stability derivative C, 1is the change in pit |

moment coefficient with varyling angle of attack 8
commonly referred to as the longitudinal static stal
derivative. When the angle of attack of the air{f§
increases from the equilibrium condition, the incref
lift on the horizontal tail causes a negative pite]
moment about the center of gravity of the airfry
Simultaneously, the increased lift of the wing c
a positive or negative pitching moment, depend |
the fore and aft location of the lift vector with reg
to the center of gravity. These contributions togy
with the pitching moment contribution of the fus
are combined to establish the derivative Cayr

The magnitude and sign of the total C, fora partl

airframe configuration are thus a function of the ¢l
of gravity position, and this fact i{s very lmportﬁ
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longitudinal stability and control. The aerodynamic
center of the airframe is the fore and aft location along
the airframe where the increment of 1ift due to a change
in angle of attack effectively acts. If the center of
gravity is ahead of the aerodynamic center, the value of
c, is negative, and the airframe is said to possess

static longltudinal stability. Conversely, if the center
of gravity is aft of the aerodynamic center, the value
of C,,,a is positive, and the airframe is then statically

unstable.

C"'u is perhaps the most important derivative as far as

longitudinal stability and control are concerned. C.,
primarily establishes the natural frequency of the short
period mode, and is a major factor in determining the
response of the airframe to elevator motions and to
gusts. In general, a large negative value of C.ﬂ (l.e.,

large static stability) is desirable for good flying quali-
ties, However, if c, 1s too large, the required ele-

vator effectiveness for satisfactory control may become
unreasonably high, A compromise is thus necessary in
selecting a deslgn range for C, .

a

Design values of static stability are usually expressed
not in terms of C, , but rather in terms of the derivative

Wind
Betore
Disturbance

- maf-
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Disturbance '
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Figure IV-13 Pitching Noment Coefficient Change Due
to Variation in Rate of Change of Angle of Attack
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¢, , where the relationis: ¢, -C, C .

CL a Cl‘ ‘u
It should be pointed out that C.llcl in the above expression
is actually a partial derivativée for which the forward

speed remains constant,
C

Ra

The stability derivative C...‘.‘ is the change in pitching
moment coefficient with variation in rate of change of
angle of attack. This derivative is sometimes referred
to as C,.,.' , the change in pitching moment coefficient
with change in vertical acceleration. The relation be-
tween these two forms is given by Cay = UC,, since

ax w/U. These derivatives arise from a so-called
“plunging' type of motion along the z-axis, in which
the angle of pitch, ¢, remains zero during the dis-
turbance,

The derivative Ca, arises essentially from two inde-

pendent sources: an aerodynamic time lag effect and
various ""dead weight" aeroelastic effects. For low
speed flight Ca, will come mostly from tHe aerodynamic

lag effect and its sign will be negative. For high speed
flight the sign of C;, can be positive or negative, de-

pending on the natu‘}e of the acroelastic effects,

The horizontal tail of a conventional aircraft is mounted
some distance aft of the wing and is immersed in the
downwash field of the wing. Whenever the wing under-
goes a change in angle of attack, the downwash field is
altered, and since it takes a finite length of time before
this downwash alteration arrives at the tail, the result-
ing lift on the tail, and consequently the resulting pitch-
ing moment on the airframe, lags the motion and creates
the derivative C,, . Even for tailless aircraft there

apparently exists a value for C,- due to the fact that the
wing must accelerate the air mass in its path as it ac-
celerates (apparent mass effect),

Since the type of motion under consideration is an ac-
celeration (v) , C,, can also arise from aeroelastic

effects such as wing twisting due to the dead weight
moment caused by the projection of the nacelles in front

Flight Path

')‘? A (Lify)
Tail

Figure IV-14 Pitching Moment Cocfficicat I to
Variation in Pitching Velocity
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of the wingr, and bending of the fuselage caused by the
dead welght of the aft fuselage and empennage section,
This twlsting and bending changes the effective angle of
attack of the horizontal tail.

The derivative C,: is quite important in longitudinal

dynamlcs because It I1s involved in the damping of the
short period mode. A negative value of Cp; iIncreases
the damping of this mode; consequently, high negative
values of this derivative are desirable,

C

]
q

The stability derivative Cag Is the change in pitching

moment coefficient with varying pitch velocity and is
commonly referred to as the pitch damping derivative .
As the airframe pitches about its center of gravity path,
the angle of attack of the horizontal tail changes, and
a lift force {s developed on the horizontal tail producing
a negative pitching moment on the airframe and hence a
contribution to the derivative C,,,q

There is also a contribution to Cmq because of various

"dead welght'' aeroelastic effects. Since the airframe is
moving in a curved flight path due to its pitching, a
centrifugal force is developed on all the components
of the airframe. The force can cause the wing to twist
as a result of the dead weight moment of overhanging
nacelles, and can cause the horizontal tail angle of
attack to change as a result of fuselage bending due to
the weight of the tail section,

In low speed flight, Cn, comes mostly from the effect

of the curved flight path on the horizontal tail and its
sign is negative. In high speed flight the sign of Cu  can

be positive or negative, depending on the nature of the
aeroelastic effects.

The derivative Cmq s very Important in longitudinal

dynamics because it contributes a major portion of the
damping of the short period mode for conventional air-
craft, As pointed out, this damping effect comes mostly
from the horizontal tail, For tailless aircraft, the
magnitude of Co, s consequently small; this is the main

reason for the usually poor damping of this type of con-
figuration, Cu, Is also involved to a certaln extent in the

damping of the phugoid mode. In almost all cases, high
negatlve values of Ca, are desirable.

Usually Ca, {s not considered as a preliminary design

parametler except perhaps in tailless alrcraft configu-

rations, In the light of the present design trend toward

larger radii of gyration in piich and higher aititude

flght, 1t is believed that consideration of €, is neces-
q4

sary in the preliminary desiggn stage,
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Figure IV-15 Pitching Moment Coefficient Chmu
Due to Variation in L[levator Deflection
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The stability derivative Cayp 18 the change in pitch

moment coefficlent with changes in elevator deflecli
and is commonly referred to as the elevator effect
ness (or elevator power ). When the elevator is
flected upward, the resultant increment in lift on
horizontal tail creates a positive pitching moment
the center of gravity of the airframe; hence the der

tive Ca, is normally positive in sign.
13

The primary function of the elevator is to control]
angle of attack of the alrframe both in equilibrium {l
and {n maneuvers. This function is usually conside
to be the most important of all the control functy
about the three axes, and so the elevator control eff
tlveness,cwE is of great importance in airframe de’

»

The design value of Cs, Is essentially determine

the anticipated fore and aft center of gravity travel ¢
airframe. The larger the center of gravity rangel,-
larger the required value of C, will be. To keep

size of the elevator within practncal bounds, the e
of gravity range must be held as small as poss
Thus in many cases of design, the maximum pra

Cnj; determines the allowable center of gravity ré
E

and in other cases the center of gravity range detery
the value of Cms A desirable value of C, cann
bg

stated in general, for each design case must be ana j
separately.

C,ﬂ

The stability derlvative c”i is the change in side

coefficient with changing sidesllp angle, It can by
ferred to as the "side force damping derivalive,”
the alrframe sideslips, the relative wind strikes thy
frame obliquely, creating a side force,Y, on the v
tail, the fuselage, md the wing, [t must be remet
that this side force is measured along the y-axis, §
is fixed to the alrframe durtng the steady flight cond
and moves with the alrframe durings a disturb

Fhe major portion of ¢, usually comes from thg

i
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Figure IV-16 Side Force Coefficient Change Due
to Variation in Sides!lip Angle

tical tail, with smaller contributions from the fuselage
and wing. It Is always negative in sign for practical air-
frame configurations,

The derivative C,,/3 is falrly important in lateral dy-

namics. Because It contributes to the damping of the
Dutch rall maode, a large negative value of this derivative
would appear desirable; however, a large negative value
of C,,[j may create an undesirable lag effect in the air-

plane's response when an attempt is made to hold the
wings level in rough air, or to perform alleron manecu-
vers,

Usually,cyp 18 not taken as an important parameter {n
the prellminary design of an alrframe. C,l] comes

mostly from the vertical tall, and the design of the ver-
tical tall is dictated primarily by the directional stabil-

ity (Cnﬂ) requirements. However, reconsideration of
the fmportance of c’,/! may be necessary if some types

of autopilots are to be installed in the airframe,

Figure IV-17 Side Force Cocfficient Change Due
to Varintion in Yowing Velocity

The stabilty dorlvative ¢, . 1s the ¢iangre In side force

coettfictent with vartation o yawing velocity, Since the
vertiead il s monnted ot some distaace belind the alr-
frome's center of pravity, whenever dhie alefyome is
rotathap at L yaw velocity, v, there ig an effective side
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force developed on the tat!, and this force glves the
main coniribution to the derivalive CYr’ which will be

positive and quite small.

C},r i{s of little importance in lateral dynamics; con-

sequently, It Is common practice to neglect this de-
rivative in lateral calculations.

Figure IV-18 Side Force Coefficient Change Due
to Variation in Rolling Velocity

C’n

The stability derivative Cr,, is the change In side force

coefficlent with variation in rolling velocity. It arises
mainly from the vertical tail, although for some air-
frame configurations there Is also an appreclable con-
tribution from the wing. A side force is produced on
the vertical tatl when the airframe has a rolling vetocity,
p, about the x-axis, if the vertical tail is located elther
above or below the x-axis; this s caused by the effective
angle of attack on the tail, due top . The sign of ¢y, can

be positive or negative, depending con the vertical tail
geometry, the sidewash from the wing, and the equilib-
rium angle of attack of the airframe.

Since ¢, is of very little importance in lateral dynam-

)
ics, It ls common practice to neglect this derivative in
lateral dynamic calculations.

Fipure IV-19 Side Tocce Coefficient Chanpe Dae
ta Vau i don ia Kaddee Deflect ion
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The stability dertvative ¢y, is the change in side force
3

coclficient with variation in rudder deflection. Accord-
ing to the sign convention adopted in this volume, a
positive rudder deflection gives a positive side force,
hence the derivative Cy ol is positive in sign.

If the airframe alone is considered, the effect of the
derivative C“u' is unimportant in lateral stability and

control. For this reason it is usually neglected in

lateral dynamic analyses. However, when the instal-

lation of an autopllot is considered, ¢, should not be
>

neglected in the design analyses becausc“its influence on
the combined airframe plus autopilot system stability
may not be negligible,

X ,}( Y

Figure IV-20 Side Force Coefficient Change Due
to Yardation in Aileron Deflection

C’s

A

The stability derivative Cysy is the change in side force

coefficient with aileron deflection. For most con-
ventional airframe configurations, the magnitude of
this derivative is zero; however, for certain aircraft
with highly swept wings of low aspect ratio, a value for
this derivative other than zero may exist.

The cffect ¢,, on lateral stability and control is not
known, but it is believed to be negligibly small,
Wind After

Disturbance

Wind
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Figure [V-21 Yawing Moment Coefficient Change
Due to Sideslip
¢
H‘J

The ntability derivative Cuy is the change In yawing

Iv-1iz

moment coefficient with varlation in sideslip angle, |
is usually referred to as the static directional dg
rivative or the '""weuathercock” derivative. When tj
airframe sideslips, the relative wind strikes the a
frame obliquely, creating a yawing moment, N , abd§
the center of gravity. . The major portion of C"ﬂ co

from the vertical tail, which stabilizes the body of A
airframe just as the tail feathers of an arrow stabil
the arrow shaft, The Cuy cantribution due to the vertid

tail is positive, slgnifying static directional stabilit
whereas the C,; due to the body is negative, signify

static directional instability. There iIs also a contril
tion to ¢, , from the wing, the value of which is usual
positive but very small compared to the body and vertid
tail contributions. 3

The derivative ¢, is very important in determining §
el

dynamic lateral stability and control characteristig
Most of the references concerning full-scale flight tef
and free-flight wind tunnel model tests agree that g

should be as high as possible for good flying qualitl‘
A high value of ¢, aids the pllot in effecting coordind
K]

turns and prevents excessive sideslip and yawing molig
in extreme flight maneuvers and in rough air, Cnﬂ Py

marily determines the natural frequency of the Dy
roll oscillatory mode of the airframe, and it is al§
factor in determining the spiral stability characteristi

Because of its important effect on the lateral charac ‘
istics, Cn/, 1s considered to be an important preliming

design parameter. To take into account airframe cf
figurations with very high wing loadings and very sl
wing spans, Reference 1 recommends the followg
formula in determining a desirable order of magnitude

Cog for any piloted aircraft:

Coy® +. 0206 ‘TW

besiruble
According to present design trend.,, this formula appe
to be quite appropriate for airframe plus the hu
pilot, but for airframes with autopilot installations, 4
magnitude of airframecn;j , indicated by the abf

formula may become unimportant. For instance, thy
is evidence that it may be advantageous to desig
airframe with a relatively small vertical tail and.
achieve satisfactory flying qualities by artificially af
ing c“/’ by means of the autopilot.

cn}j

The stability derivative Cu;, is the change in yaw

moment coefficient with variations in rate of chany
sideslip angle, M the aieframe is underpoing a rat
change of sideslp angle, /i, a yawing moment el
produced on the airframe by the vertical tail becausy
the sidewash time lag effects from the wing and fuself

_is known to exist, very I
A 4

Althouph a devivative ¢
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Figure IV-22 Yawing Noment Coefficient Change
Due to Variation in Rate of Change of Sideslip

can be stated about its mapnitude or algebralc sign be-
cause of the wide variations in opinion and in interpre-
tation of experimental data concerning {t. For most
airframe configurations, Cn; I8 apparently of rather

small magnitude and can probably be neglected in lateral
dynamic calculations. For some configurations, how-
ever, C,,;g may be of the same order of magnitude as

Ch,and, of course, should not be neglected, The diffi-

culty is that there are insufficlent data at present to
indicate for which configyrations C,.‘,j may or may not

be of importance,

The derivative c,, must be distinguished from the de-

rivative Cn, . All stability derivatives are partial de-
rivatives; that is, they are taken with respect to one inde-
pendent variable at a time, the rest of the independent
variables remaining fixed. Thus, Cn,h arises from a

transient motion in which the sideslip angle |s increas-
ing with time but the rate of yaw remains zero, whereas
C,, arises from a motion where yaw angle is increasing

with time but the change in sideslip angle remains zero.
During the Dutch roll oscillation of an airframe and
during yaw oscillation tests on wind tunnel models, the
yaw angle and the sideslip angle are both changing; con-
sequently both Cnj and Co. are involved in these mo-
tions.

When Cug cannot be neglected for a particular configura-

tion, its effect on lateral dynamics will appear mainly
in the Dutch roll damping characteristics., To increase
this damping, positive values of Cn;, are desired.

[

Br

The stability dertvative cnr Is the change in yawing

moment coelficient with change of yawing velocity. It is
known as the yaw damping derivative. When the air -
frame is yawing at an angular velocity r, a yawing
moment is produced which opposces the rotation, €, s

made up of contributions from the wing, the fusclage,
and the vertical tail, ail of which are negative in sign .,

Chapter IV
Section 3

The contribution from the vertical tail {s by far the
largest, usually amounting to about 80% or 90% of the
total ¢, of the airframe.

The derlvative C, 18 very important in lateral dynamics

because it s the main contributor to the damping of the
Dutch rall oscillatory mode. It also is important to the
spiral mode. For each mode, large negative values of
C,, are desired,

Figure IV-23 VYawing Noment Coefficient Change
Due to Variation in Yawing Velocity

In the past, Cn, was not considered an important design

parameter because a vertical tail design which produced
a reasconable value of static directional stability (C, ﬁ) was

almost certain to give adequate Dutch roll damping,
Today, however, because of design trends toward higher
wing loadings and higher radii of gyrations in yaw in
conjunction with high altitude flight, it is apparent that
the vertical tail alone cannot provide sufficient C“r for

the damping of the Dutch roll mode.

For present airframes without autopilots, ¢, must
r

therefore be considered of major importance in pre-
liminary design. Adequate Dutch roll damping can be
obtained by effectively adding to the derivative Cnr'

(4 (Drag)

c . Xa 2 N 6
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Figure IV-24 Yawing Noment Coefficient Change
C Due to Variation in Rolling Velocity
n
14

The stability derivative c“p {s the change in yawing
moment coefficient with varying rolling velocity. It

1V-13
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arises from two main sources: the wing and the vertical
tail. A negative yawing moment is developed on the air-
frame because of the unsymmetrical 1ift distribution

causing a diiference between the drag on the right wing
and that on the left wing when the airframe is rolllng.
The contribution from the vertical tail can be either
positive or negative depending on the vertical tail
geometry, the sidewash from the wing, and the equilib-
rium angle of attack of the alrframe,

The derlvatlve,(‘np is falrly important in lateral dynam-

lcs because of its influence on Dutch roll damping. 1t
{s usually negative In sign, and for most airframe con-
flgurations, the larger its negative value, the greater
the reduction in Dutch roll damping. Therefore, posi-

tive values of c,, are to be desired. For the airframe
alone, Cnp is not generally considered to be an im-

portant preliminary design parameter; however, if an
autopilot is installed to create elfective ¢, , this de-
Y

rivative may becom= quite important in lateral dynam-
fcs.

Figure IV-25 Yawing Moment Coefficient Change
Due to hrmtwn:anMw‘MfMF“on

C

n
by

The stabllity derivative C,,
R

moment coefficient with variation in rudder deflection .
This derivative is commonly referred to as the rudder
effectiveness (or rudder power). When the rudder is
deflected positively, that {s, to the left, a negative
yawing moment is created on the airplane; hence the
derivatlve Ca, is negative.

is the change in yawing

R
The importance of Cnaﬂ in determining lateral and
directional control qualities varies considerably with
different types of airframes,

The design value of Co, for a jet-powered airframe

is usually determined by considering such requirements
as counteracting adverse yaw in rolling maneuvers,
directional control in crosswind take-offs and landings,
antisymmetric power, and spin recovery control. An
additional factor which can be infiuential in establish-
lng a design value for ¢, 18 introduced when an auto-

pilot operates through the rudder.

V-4

bC" l m

Cn
'35, qSb 35, .8,

¥z

Figure IV-26 VYawing Noment Coefficient Change
Due to Variation in Aileron Deflection
Cc
"y,

The stability derivative ¢ is the change In yawl
h SA

moment coefficient with change of atleron deflection
This derivative arises from the difference in drag ds
to the down aileron compared to the drag of the y
aileron. The sign of C, 5a depends mainly upon Y

rigging of the ailerons and the angle of attack of t
alrframe. If negative, as it usually is, Cy,, 18 calley
the "adverse yaw coefficient due to allerons' because {§
causes the airframe to yaw initially in a directio§
opposite to that desired by the pilot when he deflects i
ailerons for a turn. If positive, it produces favorab}
yaw in the turning maneuver. (
The derivative C,1 is quite important in determinigy

the lateral control qualltles of an airframe, For gog
response to aileron deflection, Cy \ should be zero or ¢

a very small positive value.
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Figure JV-27 [Rolling Moment Coefficient Chanli
Due to Variation in Sideslip

c
‘g

The stability derivative C‘n ls the change In rollin

moment coefficient with variation in sideslip angle y‘
is usually referred to as the “effective dihedral df
rivative.'" When the airframe sideslips, a rolllg
moment is developed because of the dihedral effect 4
the wing and because of the usual high position of t}
vertical tail relative to the equilibrium x-axis (Figup
1V-27). No geaecal statements can be made concernt



the relatlve magnitudes of the contributions to ¢, from

the vertical taif and from the wing since these contribu-
tions vary considerably from airframe to airframe and
for different angles of attack of the same airframe.
Ciz Is nearly always negative in sign, signifying a
negative rolling moment for a positive sideslip,

Some confusion in nomenclature may arise here because
a pilot often speaks of an airplane having "positive
dihedral effect" if the right wing tends to rise (negative
rolling moment) when the airplane is side-slipped to the
right (positive sideslip), A "positive dihedral effect"
implies that the derivative Ciy is negative. In the de-

slgn stage, the value of C;, for a particular alrframe

can be adjusted at will within a large range by merely
changing the amount of built-in wing dihedral,

The derivative C; s 1s very important {n lateral stabllity

and control, and it is therefore usually considered in the
prelimlnary design of an airframe. It is involved in
damping both the Dutch roll mode and the spiral mode .
It is also involved in the maneuvering characteristics
of an airframe, especially with regard to lateral control
with the rudder alone, near stall,

To improve the Dutch roll damping characteristics of
an airframe, small negative values of C,ﬁ are desired,

but to improve the spiral stability, large negative values
are desired. Since at least some "positive dihedral
effect” Is considered necessary for good maneuvering
qualities, the design value of Ci, must be more or less

of a compromise between the static lateral requirement
of "positive dihedral effect' and the dynamic lateral re-
quirements of satisfying Dutch roll damping and spiral
stability. Most of the references concerned with full
scale and model flight tests agree that the best flying
qualities are obtained when the effective dihedral is
kept rather small,

The compromise in Clﬁ mentioned above may be neces-

sary only when considering the airframe plus human
pilot combination. For an airframe with an autopilot
installation, the selection of a design C;,s for the air-

frame alone will probably be less critical.

Figure IV-28 Kolling Homent Coefficient Change
Due to Variation in Yawing Velocity

Chapter {V
Sectiv 3

C
L

The stability derivative c,, is the change in roling

moment coefficient with change In yawing velocity. ¥
the airframe Is yawing at the rate r about the vertical
axis, the left wing panel will move faster than the right,
producing more lift on the left panel and consequently a
positive rolling moment. In addition to this major wing
contribution, the vertical tail will also contribute toC;

if it is located elther above or below the x-axis. Its
contribution can therefore be positive or negative, de-
pending upon the vertical tail geometry and the equilib-
rium angle of attack of the airframe. The signof C; Is

usually positive.

The derivative C;  1s of secondary importance in lateral

dynamics, but, it should not be neglected (n lateral
dynamic calculations. For a conventional airframe
configuration, changes in C,r of reasonable magnitude

show only slight effect on the Dutch roll damping char-
acteristics, In the spiral mode, however, Ci, has a

considerable effect. For stability in this mode, it is
desirable that the positive value of Cy, be as small as

possible. C; {8 not usually considered as a preliminary

design parameter,
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Figure 1V-29 Rolling MHoment Coefficient Change
C, Due to Variation in Rolling Velocity
P

The stability derivative C; is the change in voiling
moment coefficient with change in rolling velocii. and
is usually known as the roll damping derivative. When
the airframe rolls at an angular velocity ¢ a rolling
moment is produced as a result of this velocity; this
moment opposes the rotation. C,p is composed of con-

tributions, negative in sign, from the wing and the
horizontal and vertical tails, However, unless the
size of the tails {s unusually large in comparison with
the size of the wing, the major portion of the total (:,p
comes from the wing.

The derivative Cir, is quite fmportant in lateral dynam-
lcs because essentially ¢y alone determines the damp-
ing in roll characteristics of the atreraft. Normally,
it appears that small negative values of C‘,, arce more
desirable thaa farge ones because the airframe will
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respond better to a given aileron input and will suffer
fewer {light perturbations due to gust inputs,

The derivative Ce,, is not usually considered a pre-

liminary deslgn parameter, Its value 1s more or less
riven by the wing planform geometry which is deter-
mined by other more important deslgn criteria. The
vialue of C,“ does directly affect the design of the ailer-

ons, however, since €, in conjunction with 015 estab-
P

lishes the airframe's maximum available rollingAveloc—
ity; this is an important criterion of flying quality .
X

Fipure IV-30 Rolling Homent Coefficient Change
Due to Variation in Rudder Deflection

It

The stability derivative C.h“ s the change in rolling

monient coefficient with variation in rudder deflection.
Because the rudder is usually located above the x-axis,
a positive rudder defiection will create a positive rolling
moment, (3;5“ {9 thercfore usually positive in sign;

however, it can be negative, depending on the particular
airframe configuration and the angle of attack at which
it is flying.

The derivative ¢, is usually of only minor importance

in the lateral contr?)l qualities of conventional aircraft,
and it is sometimes neglected in analyses. When dealing
with airframe-plus-autopilot synthesis of a particular
configuration, however, it is believed that this deriva-
tive should be included until further research shows that
it can be neglected for that case,

ba

Figure IV-31 Rolling Noment Coefficient Change
Due to Variation in Afileron Deflection

(o}
i
By

The stability derivative C is the change in rolling
Vs,

moment coefficient with change In aileron deflection,
It is commonly referred to as the alleron effectiveness
(or alleron power). According to the definition used
In this volume, left aileron down is a positive deflection,
This produces a rolling moment to the right which is
positive; C,“ is therefore positive.

As far as lateral dynamics are concerned, the derivative
Cz“ {s the most important of the control surface de-

rivatives. The aileron effectiveness in conjunction
with the damping in roll (Cy) establishes the maximum

available rate of roll of an airframe, which ig a very
important consideration in fighter combat tactics at
high speed. The aileron effectiveness is also very im-
portant in low speed flight during take-offs and landings
where adequate lateral control is necessary to counter-
act asymmetric gusts tending to roll the aircraft,

Desirable values of ¢ for a particular fighter air-
bay.

frame configuration can be determined by use of the
Navy and Air Force specification that the value of the
wing tip helix angle during a rolling maneuver for full
aileron deflection should be at least such that %U =,09,

SECTION 4 - FACTORS THAT DETERMINE THE BASIC NON-DIMENSIONAL
STABILITY DERIVATIVES IN GENERAL

The purpose of this section is to present a general dls-
cussion of all the various factors that determine or in-
fluence the basic non-dimensional stability derivatives
and to point out their relative importance.

A thorough knowledge of these factors is important to
the servomechanist, to the control system designer, and
to all the others concerned with optimizing the integrated
airlrame-autopilot-controls system. Not only must
Lhey be aware that changes i these factors produce
clioyres inthe stubllity derlvatives; but, they must also
know which facters produce important changes and
which nepligible ones. Such information is espuecially
{mpostat to the acrodynnicist, for when he is given a
particular aivframe confipuration at a particulur flight

v-16

condition, he must carefully consider each factor in
establishing numerical values for the stability deriva-
tives,

The two primary factors which establish the basic non-~
dimensional stability derivatives for any airframe are
(1) the configuration of the ailrframe and (2) its flight
condition; in general, the first s the more important,

In the lists which follow, cach of these primary fuctors
is divided into various contributing factors listed in
order of decreasing ilmportance within each group,

Airframe Configuration

(a) Basic .irframe geometry: wing and tall




planforma, tzil sizes and moment arms, wing
dibodenl] fuselage size, ete.

(L) sleranio alrframe geometry: wing trailing edge
aed leadhy; edie flaps, speed brakes, landing gear
extoesicn, ete,

(c) #lerudle girframe weight distribution: center
of gravity nesition,

Flight Condiiton

(¢) ach number,

(2) Angle of attack (lift coefficient).
(f) Dynamlc pressure (aeroelasticity),
(z) Power (thrust).

(h) Unsteady flow.

This order of importance within each group Is based
upen data derived from a typical high-performance jet
fighter and is presented to give a general ldeaconcern-
Ing the relative importance of the factors involved, but
ft must be remembered that this order may vary slightly
for different airframes and for different tndividual stabi-
lity derivatives,

So many factors are Invalved in determining the stability
derivatives for a particular airframe under all flight
conditlons that it would obviously be a tremnendous task
for the aerodynamicist to consider all these factors in
detail before arriving at final stabllity derivative esti-
mates, Fortunately, when the airframe is in the pre-
liminary design stage, fairly good estimates of most
stability derivatives important to dynamic stability and
control qualities can be made by considering the three
factors listed in the Airframe Configuration group and
a fourth, Mach number, from the Flight Condition
group, Once the values of stability derivatives have
been obtained by considering these four factors, the
effects of the rest can be considered merely as addi-
tions or refinements; consequently, rough estimates
of their values will usually suffice.

In the following pages, each of these eight factors is
discussed in detail,

(a) EFFECT OF AIRFRAME BASIC GEOMETRY

Of all the contributing factors that determine the basic
non-dimensional stability derivatives, the most im-
portant is the basic alrframe geometry. The term
"baslic airframe geometry' as used here refers to the
geometrical characteristics of the airframe when it is
in the aerodynamic "clean" configuration; that is, with
flaps, speed brakes, landing gear, etc., all retracted.

Not only {5 baslc alrframe geometry the most important
factor, but more theoretical and experimental data are
avallable on its effects than on the effects of any of the
others., With the ald of such basic reports as Refer-
cinces 1 Lo 5 of Chupler V, most of the low-speed stabil-
ity derivatives can be evaluated to a fair depgree of ac-
curacy merely from an examination of a three-view
drawing of an airframe,  Some of the major effects of
the puometry of various alrfrume components can beo
briefly outlined:

Chrotor 1V
Cuelion 4

The wing planform has a great influence on moay de-
rivatives, The aspect ratio and sweepback of the wing
are the main elements establishing derivatives related
to 1ift, drag, and rolling moment, such as C, , Cp_,

C; , andC; . The wing planform in conjunction with
» r

the amount of dihedral angle also establishes the value
of Cy .
M

The size and geometry of the horizontal tail and Its
moment arm from the center of gravity establish the

longitudinal pitching moment derivatives c,, and c, ,

and provide a large contribution to Ca,. Slmuarl;,

the size and geometry of the vertical tail and its moment
arm from the center of gravity have a major effect
on the side force and yawing moment derivatives c”3 ,

Co gs Cogr Gy, v and Co

The size and shape of the fuselage and of the nacelles
have a great effect on Cags and a somewhat smaller

effect on ¢, . The positioning of the wing, the horl-

zontal tail, and the vertical tail on the fuselage is quite
important in determining not only mutual interference
eflects, but downwash and sidewash effects on the tails .
These interference effects sometimes have a consider-
able Influence on the pitching moment, side force, and

yawing moment derivatives suchasc ,c.,c ,c
Ba R TYg o Tug
Ciys and Gy o

(b) EFFECT OF ALTERABLE AIRFRAME GEOMETRY

The term '"alterable airframe geometry" is used here
to refer to any of the retractable or disposable aero-
dynamic devices, such as wing leading edge flaps, wing
trailing edge flaps, speed brakes, landing gear, and
droppable external stores which are used for special
flight conditlons and which render the configuration
different {rom its usual "clean" configuration, How-
ever, the term does not apply tc conventional control
surfaces which are considered part of the "clean” con-
figuration,

Extension of wing leading edge and trailing edge [laps
enables the alrframe to reach a higher lift coefficient
and produces a great increase in the drag coefficient,
but the effects on the other longitudinal stability de-
rivatives are usually small, except that co, and ¢y,

may be affected in some cases ol highly swept wing
configurations. Extenslon of wing tralling edge f(laps .
however, drastically changes some lateral derivatives,
especially c, and Ciy

Extension of speed brakes increases the drag coeffi-
cient of the airframe but usuaily docs not appreciably
affect any of the other stability derivatives., DBut if the
speod brakes are of the wing split-flap type, a great
increase In G, will result, and if the wing ts hiphly

swept, thero may also be considerable changes ¢
I

Iv-1?
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xtenston of the landing gear usvally does not have an
apnruecinble effect on any of the stability derivatives al-
thoveh it dees affect the drag coefficient,

The addition of wing pedestal tanks or tip tanks to an

airframe can produce appreciable changes In such de-

rlvatives as €, ,¢cp Ciyr Clzp and Cng, depending
a

upon the particular configuration. Unfortunately, data
of a general nature concerning external store configu-
rations are rather scarce at the present time; it is
therefore difficult to estimate the resulting effects on
all the stability derivatives,

(c) EFFECT OF ALTERABLE AIRFRAME WEIGHT
DISTRIBUTION

As pa particular airframe is operated throughout its
{light regime, the burning of fuel, the firing of ammuni-
tion, and'the dropping of external stores change the
welght distribution, The most important effect of this
isthe resulting fore and aft shift in the center of gra-
vity, which produces a very great change in the air-
frame's longitudinal static stability derlvative ¢,

(This situation is explained more thoroughly in the dis-
cussion of C,_ In Section IV-3.)

In addition, as the position of the center of gravity
shifts, there is a consequent change in the moment arm
of the horizontal tatl, resulting in changes in the pitch-
ing moment derivatives C.;, Cag and C”E. However ,

the per cent change in these dertvatives is usually neg-
ligibly small except for some tailless configurations
where the effective tail moment arm is rather short .

Finally, since the airframe is not completely rigid but
fs subject to elastic distortion, welght distribution can
cause appreciable deformation of the alrframe configu-
raticn and s¢ affect certain stability derivatives. For
example, large nacelles and external stores mounted on
the wing can change the wing bending and torsional char-
acteristlies eprough to affect some of the stability deriva-
tives, mainly Cy., Cn, and C,/3 The magnitude of

these effects depends on the particular geometry and
elastic properties of the airframe concerned.

(4} EFFECT OF MACH NUMBER

The effect of Mach number on basic stability derivatives
s, in general, second in importance only to the effect
of alrframe configuration, Every derivative is changed
to an appreciable extent us the Mach number varies
throughout ihe speed range of supersonic aircraft,

The mugnitude of the change ln stability derivatives
as the Mach number is varied from 0 to about 1.4 is
primarily a function of the alrframe's basle geometry |
A configuruation which has a high aspect ratio unswept
wing and tatl, both with thick airfoll sections, will show
Large aad abrupt changes (of the order of 50% or moro)

v-18
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in its stability derlvotives, Conversely, a configuration
which hzs a low aspect ratio highly swept wing and tall ,
both with very thin airfoil sections, will show only small
and relatively smooth changes in the stability derivatives
over the same Mach number range.

The slopes of the lift curve of the wing and of the hori-
zontal tail are of fundamental impertance in the evalua-
tion of many of the derivatives. A brief examinatlon
of a particular derivative (C,,) will demonstrate fairly

typical effects of Mach number on stabillty derivatives
in general.

Figure [V-32 shows the effects of different wing plan-
forms onc,, vs. Mach number, Aspect ratio and

sweepback have a pronounced influence on €., for sub-

sonic Mach numbers, and an even greater influence In
the transonic region. But for Mach numbers greater
than about 1.8, the effect of the wing geometry dimin-
ishes as shown by the converging trend of the family
of curves In the dlagram. {For high supersonic Mach
numbers, theory shows that C, Is given by the single

axpressionC, = 1: I and is independent of wing geom-

etry.) This reduction in the {mportance of airframe
geometry in supersonic Mach number regimes is fairly
typical for most of the stability derivatives,

If any one effect of Mach number is more tmportant
than the rest, 1t is probably the effect on the longitudinal
atatle stabillty derivative Co . The wing contribution

to c, depends on the distance between the center of

pressure of the alr load and the center of gravity of the
airframe. For relatively low aspect ratio wings the
center of pressure gradually moves forward as the
Mach number increases from 0 to about .8 or .8, pro-
ducing a positive increment toc, and thus making

the airframe less stable. As the Mach number is in-
¢reased through the transonic region and into the super-
sonic region, the center of pressure shifts aft, causing
a large negative Increment to C"‘a and thus greatly in-

creasing the static stability of the airframe,

Another very important effect of Mach number is its

great influence upon the primary contro! effectiveness

derivatives C,, , C,, , C,, , and upon the related
E A R

secondary derivatives such as Cuy v Crg s Cygs and
E A A
C‘sg . For the conventional trailing edge flap type of

control, an increase in Mach number from O to .8 or.®
usually avgments the control effectiveness by an appre-
clable amount. As the Mach number is further in-
creased through the transonic region, however, the
cantrol effectlveness decroases rapidly, so that at
supersonic speods it approaches a value about one half
that at low subsonic Mach numbers,

(e) EFFECT OF ANGLE OF ATTACK

The values of some HYasic non-dimensional stability do-
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rivatives depend on the angle of attack, or lift coeffi-
cient, of the airframe, whereas other derivatives are
relatively unaffected.,

Usually there are only a few longltudinal derivatives that
are primarily functions of angle of attack: Co, » Co,

Cu,,and Ca,. Of course the equilibrium lift anddrag

coefficientscL und Cp also depend on «. If the wing of
the airframe is of low aspect ratio or highly swept, the
curves of Cu and C, versusa which are usually con-
sidered to be straight-line relationships in classical
aerodynamics, are likely to become nonlinear; thus
causing the longitudinal derivatives ¢, and C, , the

slopes of these curves, to be functions of angle of attack.

Many of the lateral derivatives change with angle of
attack: the ones that change the most are C‘,a’ c;
r

Cyy Cnys Cigy s and cn“; the ones that usually change

only slightly are C,,/J , Cn‘g , C“R , Can , and Cp - A

few of the lateral derivatives, such as Cy;, and Cy;, ,

remain fairly constant with angle of attack, at least up
to the stall.

Although most of the derivatives mentioned above are
actually functions of o, they are usually evaluated at
an equilibrium angle of aitack corrcsponding te a given
equilibrium flight condition and are thereafter assumed
to remain constant during any angle of attack perturba-
tion from the equilibrium condition. This assumption
must be made to maintain the linearity of the equations
of motion. It is clear that the validity of this assump-
tion depends; first, on how much the derivatives change
with & small « ..inge ina ; and second, onhow much
these changes in the derivatives affect the airframe
dynamics. For instance, the derivative Cy, may ex-

hibit a laryge nonlinear effect with a, but if only the
dynamics of the phugolid are of interest, the perturbation
ina,Aa , is small, and thus the effective contribution

of this derivative to the motion, given by the product
Ci, ta, is small. Consequently, the nonlinear effects

of C_, witha can be safely neglected for this case,.

Although such nonlinear effects of angle of attack are
usually quite small and can be neglected there is one
derivative, ¢, , which requires special attention in

mu
certuin cases. The curve of ¢, versus a is usually a
straight tine; however, for highly swept wings of mod-
erate aspect ratio this curve can exhibit some rather
abrupt nonlinearities. This means that Ca,» the slope

of this curve, can show a large change in magnitude
over a relative small range of o, It is clear that in
equilibrium flight condition tn the vicinity of this non-
lincarity, there may be a large error in the calculated
tongzitudinal dynamics if the effect of angle of attack on
Cq, 15 Ot taken into account,

This sort of nonlinearity can bo hundled on an analog
computer by using two or more stradght lines to approxi-

mate the C; versus a curve, or, better still, by a cam

describing the nonlinear curve exactly,

(f{) EFFECT OF AEROELASTICITY

Until a few years ago, the only aeroelastic effect on
the dynamics of aircraft considered important was the
reduction in maximum attainable rate of roll; that is,
the reduction in the aileron effectiveness derivatlve
Ciy, and the roll damping derivative Cy,. Since that

time, because thinner wings have aggravated the struc-
tural problems, aeroelastic effects on many of the other
derivatives have become appreciable. Today, aero-
elastic effects on stability and control are so important
that it is imperative for the aerodynamicist to consider
them in evaluating stability derivatives,

Aeroelastic effects on stability derivatives can arise
from any of the following considerations:

1. Wing torsion and bending due to:

a. Alrloads in equilibrium flight,

b. Aileron deflection.

c. '"Dead welght" distribution when the aircraft is
subjected to a normal acceleration increment, an.

2. Horizontal tail torsion and bending due to:

a. Airloads in equilibrlum flight.
b. Elevator deflection.

3. Vertical tall torsion and bending due to rudder de-
flection.
4. Fuselage bending and torsion due to:

a. Airloads on the horizontal tail.
b. Alrloads on the vertical tail.

6. Fuselage bending due to ""dead weight" distribution
when the aircraft is subject to a normal acceleration
increment, M.

This list Is quite general but may or may not be com-
plete for a particular airframe. Its main purpose is
to create an awareness {n all those concerned with an
optimum airframe-autopilot-control system of the
many possible sources of aeroelastic effects on air-
frame stability derlvatives,

The magnitude of aeroelastic effects for any particular
airframe configuration at a particular flight condition
depends upon the following factors:

Dynamic pressure.
Alrframe geomelry.
Mach number.
Structural rigidity,
Normal acceleration,

N o LS B e

A brief discussion of each of these five fuctors follows, |

1. Dyunamic Pressuroe



Acroelastic effects are primarily a function of dynamic
pressure, 4 . By definition, the value of the dynamic
pressure is: =% 2U? | where » Is the density of the

air and U is the true forward velocity of the alrcraft,
Thermodynamically, ¢ can be expressed as , 7%,

where D is the ambient static pressure of the atmos-
phere. Since p decreases as altitude increases, it is
clear that dynamic pressure increases as the Mach
number increases and as the altitude decreases. And
if 1t Is assumed that the effects of aeroelasticity In-
crease with dynamlc pressure (which is generally the
case), then it can be concluded that the magnitude of
aeroelastic effects are largest when the aircraft is
flying at high speeds and at low altitudes,

For most stability and contral investigations, the change
in altitude during a maneuver is either zero or small
enough to be neglected. Therelore, when the forward
speed changes (i.e., when the Mach number changes) ,
as it does for example during a phugold oscillation,
the dynamic pressure changes, and the forces and
moments due to aeroelastic deflection are altered,
affecting the values of the stability derivatives¢,
U

CL, » and C,, . The vifect upon Cy, Is the most Im-

portant one and should be appraised when estimating
stability derlvatives.

2. Airframe Gcometry

The magnitude and, more importantly, the sign of aero-
elastic corrections to the "rigid" stability derivatives
depend to a large extent upon the airframe geometry ,
especially upon the geometry of the wing., As an ex-
ample, consider the lift curve slope, Cy, - In Flgure

1v-33 , the ratio of elastic ¢, to rigid ¢, is plotted

as a function of dynamic pressure.

The effect of aeroelastic deflection is to increase C.,

for a sweptforward wing and to decrease it for a swept-
back wing, Yor a straight wing, Cy, is first increased,

then decreased as g is increased thru the transonic
region. Similar effects can be observed for other
stabilily derivatives; consequently it is essential to
know the specific airframe configuration before any
aeroclastic effects can be calculated.

3. Mach Number

In addition to {ts primary effect in determining the dy-
namic pressure, the flight Mach number itself is quite
important in establishing acroelastic corrections to
stubility derivatlves. Since the distribution of the alr
load on the wing and horizontal tall is altered as the
Mach nuniber is changed, the resulting acroelastic
deflections are also affected and are especially notice-
able in the transonic region. In Pigure 1V-32 , for
example, the odd behavior of the curves in the transonic
region vesults from a rearward shift of the center of
pressure of the air loads on the wing as the Mach nun-
Ler increases,
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For subsonic flight the llne of the centers of pressurs
for a straight wing with average aspect ratlo is locata
approximately at .26 MAC, a position normally abcad
of the elastic axls of the wing. As the Mach nuiber is
increased through the transonic and into the supersonic
region, this line of centers of pressure moves aft t¢
about .50 MAC, a position normally aft of the elastic
axis. As a result, the torslonal deflection of the wing
about its elastic axls will actually change direction as
the transonic region Is traversed. This phenomenon
is clearly demonstrated by the action of the straight
wing curve of Figure 1V-33.

4, Structural Rigidity

Structural rigidity is of course very important in deter-
mining the magnilude of the aeroelastic effects o
stablility derivatives. The more rigid the structure, the
more it can resist the air loads, and the less it {s sub-
ject to aeroelastic deformations. DBut the amount of
rigidity possible is limited by considerations of weight
and aerodynamlcs. For example, very thin wings are
considered necessary for supersonic aireraft becuuse
they make possible 2 reduction in aerodynamic dray; .
However, a very thin wing inevitably mecans a wiay
which ts weak In resistance to torsion even Uf it Is con-
structed of solid material, This lack of rigidity results
in great aeroelastic effects on tho derivatives C" and

A
c, . ln addition, a thin wing will probably bend spanwise
b

ecasily producing a great effect on C'B' The most usual

way of minimezing these effects is to use a wing plan-
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fern of low aspect ratlo,

In addition to the torsional and bending defiections of the
wing, the structural rigidity of the horizontal tafl and of
the rear portion of the fuselage can produce serious
acrcelustic provlems hecause the pitching moment con-
tribution to the airframa {rom the horizontal tall depends
net onty upon the acreelastic bending and torsion of the
horlzontul tail itse!, but also upon the flexibility of the
fusclape as a link between the tall and the rest of the
alrframe. The aft fuselage is subjected to a moment
from the tail as well as to a vertical force. Usually
the vertical force is the predominant ¢ffect, so that
the fusclage deflects in 2 direction te relieve the load
on the tail, thus reducing the horizontal tail effective-
ness. This effect has serijous aerodynamic conse-
quences because all the gitching moment stability de-
rivatives, Cy, Ca_, Cay, Cag, and C‘”s’ depend on the

horizontal tail effectiveness, and most of them are very
important to longitudinal stability and control char-
acteristics.,

5. Normal Acceleration

Depending on the particular geometry and structural
rigidity of an airframe, aeroelastic effects can be im-
portant under flight conditiens Involving normal ac-
celeration other than one "g.** For Instance, consider
an alreraft with large engine nacelles mounted out-
board adong the wing span and with the ceater of gravity
of the nacelles forward of the elastic axis of the wing .
When this alreralt is subjected to change in normal ac-
celeration, on | the ""dead weight' of the nacelles pre-
duees both torsional and bending deflections of the wing .

Actuually, the correct method for introducing these
aeroclustic effeets into the dynamics of the airframe is
to provide equations of motion te account {or the elastie
degrees of freedom, in additicn to the conventional
equations of motion which are written with respect to
the center of gravity of the rigid airframe. For the
alrcraft desceribed in the last paragraph, for example,
two more equiations are necessary to account for the
wing tlp rotation and for Its deflectlon relative to the
center of gravity of the atrframe.

However, if the motions of the airframe are assumed
to be ruther slow tn comparison with the natural fre-
quencles of the elastic portions of the airframe, the
Inertia effects of various coucenirated masses relatlve
to the entire mass of the atrframe can be neglected, and
only the "steady state aerodynamic effects caused by
structural deformations need be considered.

Assume that the atrframe is subjected ta an incremental
nocmal acceleration, on, which does rot change with
thac—-for instance, during a stabilized turn or a con-
stunt speed pull up mancuver. For this stabilized
norisal weceleratton the change in airload on the wing
causcd by the torstonal and bending defloctions produces
incremceuts ta LIt and pltehing moment which can be
cxproesned by the partial dertvatives ‘J_ and Ly, It
A% ) ahn
iy be concluded that In the paaticular ¢ase of stabi-
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lized normal acceleration, no additionz! elastie equa-
tions of motion are required, and aercziasiic effects
can be taken into account in the conventional equations
of mot_f:é)n for a xa'(i:gld airframe by adding terms of the
form Zran and Sy,

e T e

But instead of using these new stability derivatives in
this form in the equations of motlon, it is convenient
to split each of them into components which are, in
effect, contributions to more common stability deriva-
tives. That is, XL Is transformed into contributlons

to Cry and €y, and % is transformed into contribu-
tions te Cu; and Cag. These transfers can be made
because An » g—(é - a)at all times for the rigid airplane
equations,

For example, consider the pitching moment equation
expressed in non~-dimensional stability derivatives in-
cluding the derivative Ly,

dAn

cﬂ;éc_n Aa s -En g%,.ﬁgg_ gﬁ.% An o
da ae gc
a(ZU) B(ZU)
Substituting np « Y& -2) and collecting terms,
8

cy amizu

T

which can be writien,

oo - 2. .
Cx x, 2w )che[ @nggﬁn}ég
Ca Tl A“'[""“" oo cg (20t

€ 0, taeC,, &.c, gﬁh.u

where both Cg. and C‘,,,q consist of two parts, the baslc

portion arising {rem the aeredynamics of the airframe,
and the other part arising from the elastic deflection
caused by normal acceleration.

It may be seen, therefore, that when the aeroelastic

effects of "'dead weight'" items are due to steady state

normal acceleration, they can be taken Into account

merely by adding their effective contributions to the

derivatives C,, CLq , C and C,,,q. This sort of aero-
a

lla 4
elastic contribution to stability derivatives is not loo
difficult to evaluate, especially if static deflection data
from stress static loading tests on the prototype air-
plane are available, giving experimental values {or
£y and Xy,

o oAn

When the derivatives %L and €= are iniroduced into
dAn aAsL

the equations of motion of the aliframs, mcl ap\groxtma:e
expression for An 1s sometimes used: M - ._Lci‘._ , where

Aa s the perturbation angle of attack ancj C, ls the
cquitibrium Lift coetficient. This expresslon for & s
true only for the steady state portlon of constant speed
pull-up type maneuvers where the pitehlng velocity @ is
constint and wher - the rate of change of angle of attack,




a, 15 mero, Thly o aresstion also neglocts the effects
of such dertvative:s as CHE' Cuyo end Cp . If this

e
coproxlmate exor2ssion for an {s nsad, seroelastic
contilbutions to the siabllity derivatives C, ond Cp, are

obained instead of contributicns to Cu), Cu,, Cuy, and
Cay, 25 was demonsirated above, Although this tech-

niguz ylelds reasonebly practical answers, it must be
reaiized that the approximations involved lead to greater
fnaccuracy than if the correct expressien for an is used,

By considering the motion of the airframe restricted to
stezdy normul accelerations (that Is, wher an is not a
function of time) it has been shown that aeroelastic
effects due to normal acceleration can be Included in
the conventional equations of motion, and that, das a
result, the complicaticns of introducing additional
elastic equations of motion have been avoided. The
question is whether or not this technique can be used
when the motions of the airplane are not steady, as
during the response to an elevator pulse or tg a sinus-
oidal elevator input. Although no flight test data are
available to substantiate the conclusion, this technique
is believed to yield satisfactory results for low fre-
quencies, say from 0 up to 8 radians per second,

The main assumptions involved are that the inertia
characteristics of the vartous elasiic portions of the
alrfrome moving relative to the ¢.g. of the airframe,
and the higher order aerodynamic derlvatives caused
by the relative motion are both neglected.

In practice, most jet fichters of today are of sufficient
rigidity and of such configuration that this sort of aero-
elastic effect resulting from normal acceleration is of
secondury importance in dynamic stability and control .

In other words, the magnitudes of JC; ‘and ), are
34 o
usually small enough that thelr contrtbutions to ¢ N

CLy .y S, and Cay can be ignored. However, at least

one ¢ase is known where these aeroelastic contributions
cannot be neglected; it is therefore recommended that
for any given configuration under consideration these
effects be evaluated.

In sume cases the effects of aercelasticity cannot be
considered as simple additions and corrections to the
usual stabllity derivatives, and additional equations of
motion with entirely new situbility derivatives are re-
quired to define the acroclastic motion,

For example, consider a siraight wing aireraft with a
very thin airfoil seetion and with heavy external stores
mounted on the wing tips,  The natural {requency In
bending (and perhaps in torston) of this system can be
low enouizh to e¢ffect the deaipn of a longitudinal aute-
pilot fur this dircraft, and conscquently this acroclastic
effcet must be constdered as an addittonal degree of
frecdom, This exaraple difiers from the previous one
{n that thic natural frequency of the prescut elastle
systean bs assumed relativedy low and close to the fre-
quency of the longlrdinad short period mode.

———————essssssssssnnn
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This sert ¢f acreslastic deformation may affect not only
the stabillly but 2lso the flutier churecieristics, Flutler
problems are usually concernad with the coupling of the
natural medes of the elastic airframe with acrcedynamic
unsteady flow effects; and in general, the freguencies
involved are too high to cause any effect on aircraft-
plus-autepilot stabtlity, But there is an intermediate
frequency range betvicen the high frezuencles lnvolved in
flutter and the relatively low freguencies involved in
dynamic stabiiity, and in this range there can be elastic
effects without unsteady flew (such as that described in
the exampgle in the previous paragraph), or conversely,
there can be unsteady flow cffects without elastic changes.

As another example of aeroelastic effects due to ac-
celeration which may require additional equations of
motion, ccnsider an airplane in which the rear part of
the fuselage is relatively flexible and the aft fuselage-
empennage system has a natural frequency close to
either the lengitudinal short period or to the Dutch roll
natural frequencies.

In summary, not only are aeroelastic effects important
in establishing the values of stability derivatives for
equilibrium flight, but in some cases they can be im-
poriant in transient and steady state oscillatory con-
siderations of aircraft dynamnics in the frequency range
Jower than those of classical flutter,

Techniques for arriving at suitable equations of motion
for fuselage bending and wing bending are available. *

Derivatives important to aircraft stability and control

and most likely to be affected by aeroelasticity are:

c.,C Ca +Ca.Ch 8L € ,C ,C ,C, and
a b, P 5a yi]

Lt u L3 "

Cay
(g) Effect of Power

Although very few experimental data are available con-
cerning the effects of jet power on stability derivatives,
it is not too difficult to calculate or estimate the major
effects theoretically, Such investigations have shown
that, in general, power effects on the basic stability
derivatives are rather small {Reference 3); conse-
quently, most dynamic stability analyses neglect jet
power effects. It must not be assumed that jet power
effects can be neglected when considering longitudinal
equilibrium or trim conditions, for the moment due to a
thrust line not passing through the center of gravity of
an alrframe may be quite large.

It is usually necessary to mount the tail surfaces of a
jet-powered airframe at a safe distance from the jet
blast because of the very high temperature. As a ro-
sult, jet power-on stability problenis are much simpler
than those of the proveller-driven airframe as the latter

*Pail, 5.1, and Scars, W.R., ‘Sowe Acroelastic Proper-
ties of Swept Wings,' Journal of  the Acronuutlceal
Sciences, XVI, No. 2 (February 19449), 106-116, 119,
White, R.J., ‘Yfnveatipation of Latbral Dynamic Sta-
LIty i the XB-17 Atrplance,’ Journul of the Acronau-
Lical Serence | XVIEL Noo 4 Quareh 1050y, 133- 144,
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is subject to power cffects that can be quite large be-
cause the tail surfaces are frequently immersed {n the
propeller slip-stream,

There are three major contributlons from the jet power
plant to the equilibrium (trim) and dynamic stability of
the airframe;

1. Direct thrust effects.

2. Direct normal force effects at the air duct inlet,
3. Induced downwash at the tall due to the inflow to
the jet blast,

{A fourth jet effect, that {s sometimes considered,
may be termed a Corlolis effect, and involves the forces
and moments on the alrframe produced by the inter-
action hetween the linear fore and aft internal mass
flow along the length of the jet engline and an angular
veloclty of the airframe itself. For conventional turbo-
jet fizhters it appears that this effect is small enough to
be neglected, but for rocket powered missiles It can be-
come significant. *)

1. Direct Thrust Effects

Consider the direct thrust effect on the pitching moment,
When the thrust vector (T) passes through the center of
gravity of the atrplane, there can be no resultant pitch-
ing moment acting on the airplane. However, the thrust
can act along an axis located some distance (arm 2, )
from the center of gravity Figure IV-34.

The jet thrust moment i, is glven by:
My = Tzq
Converting My to a moment coelficient:

Tz
C, «—1
T Sc

Figure IV-34 Jet Thrust Homent

This thrust moment coemclent,(‘nT , must be balanced

out by un aerodynamic moment coefficient, C, , when
the alrframe is in an equilibrium flight condition, thus
creating a contribution to the stability derivative para-
meters i, andM, ", Hence this direct thrust effect
Influences the longitudinal dynamics of the airframe.

Another direct thrust effect arises because the thrust
output of a jet engine at a constant throttle setting

*statler, 1.C, ‘Dynwnic Stability nt Hligh Speeds
from Unsteady Plow Theory,’ Journul of the Aero-
nuulteal Sclences, XVIE, No. 4 (April 1950), 232-

242, 200,
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changes with the forward specd of the enine, creating
the basic dimensional stability derlvative%! . The value

1
of thls derivative can be obtained from engine per-
formance curves of the type shown in Figure IV-35,

100% RI'M

C
Thrust 90% RPM
in lbhs.

True Airspeed ————e

Figure 1V-35 Typical Effect of Speed on Jet
Engine Thrust (altitude assumed constant)

o
-3-5 is given by the slope of these curves, and it can be

seen that its magnitude is quite small since the curves

are relatively flat., This is characteristic of present-

day jet engines, and consequently, the thrust stabllity

derivatlve%‘l is usually neglected in dynamic stability
u

analyses.

If Jet engines are mounted outboard along the wing span
of an airframe, a contribution to the lateral stability
dertvative c,,p arises because of the difference in thrust

resulting from the different effective forward speeds
of engines mounted on opposite sides. Similarly jet
englnes mounted above or below the center of gravity
of an airframe contribute to the longitudinal stability
derlvative ¢, . However, both these contributions are

functions of tf\e engine characteristics shown in Figure
IV-35, and it has already been concluded that these
characteristics produce negligible effects, For ex-
ample, calculations were made of the direct thrust effect
on ¢, for the Northrop YB-48 Flylng Wing Bomber;

eight jet engines were mounted along the wing at re-
latively large distances from the center of gravity, and
even in this rather extreme case, the change in Ca, due

to this jet effect was only of the order of a few percent, *
2. Direct Normal Force Effects at the Air-Duct Inlet

If the airframe is flying at some attitude, either in the
equilibrium condition or during a disturbance, where
the local flow entering the air duct inlet must be de-
flected to flow into and along the duct axis (Figure 1V-
38), the resulting momentum change of the air stream
causes a force normal to the atrf{rame velocity to act at
the nose or lip of the inlet, The maguitude of this
normal force is given by

*Kocrner, W, G., Dymnweic Laternl Stability - YB-49, '
Northrop Alrcraft Report A-110, Northrop Alrcraft,
Inc.,, Hawthorne ‘ulif,, 1949,
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where m Isthe air mass flow into the engine and ¢ is
the angle through which the local flow must be deflected
to flow into the air duct inlet.

Norimal Force

a\f\
- >
Airframe ®
Velocity
Local Flow Velocity

Figure IV-36 Normal Force at Air Duct Inlet

Wind tunnel tests were performed on an isolated nacelle
to verify the presence af this normal force and to deter-
mine the point of application along the length of the
nacelle, * These tests confirmed the magnitude of the
normal force given by the above equation and showed
that when the nacelle was mounted on a wing, the normal
force at the alr duct inlet due to the air mass flow was
about twice as high as for the isolated nacelle. This
difference was caused by the upwash ahead of the entry,
due to the wing (see Figure IV-36). Thus, in calculating
the normal force at the afr duct entry, it {s important
to deal with the local flow at that position, and not
merely with the relative wind vector assoclated with the
complete airframe.

Since the air duct inlet is usually ahead of the center
of gravity, this normal force gives rise to a nose-up
pitching moment which increases with angle of attack,
thus creating a positive increment of the derivative
C, ; this change tends to be statically destabilizing .

The small positive increment to ¢, due to this effect
is negligible,

A similar condition exists in sideslip, where the force
at the air duct entry increases the magnitude of the
stability derivative Cy; and normally decreases the
derivative Cnﬂ ; these changes are in a direction to
make the craft statically less stable, Calculations
on the eight-jet flying wing YB-49 showed that the
maximum {ncrease in Cy, Was of the order of 10% when

considering this flow deflection effect, but the decrease

In Cuy was negligible for this configuration because

of the short effective moment arm.

Depending upon the airframe configuration, other sta-
bility derivatives may be affected by this airduct jnlet
normal force effect. If the jet engines are mounted
at relatively large distances Irom the center of gravity
of the airframe, forces and moments will be developed
*Squire, H.B., ‘Jot Filow and Its Effects on Alr-

craft,’ Alrcruft Engincering (British), XXII, No.
253 (Murch }195Q), 62-67.
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at the alr duct entries when the airframe is undergoing
pitching, rolling, and yawing velocities, leading to
contributions to such derivatives as Cagr € and Cn, -

n?

For most cases, however, these contributions are
negligibly small,

3. Induced Downwash at the Tail Due to Jet Inflow

The third contribution of the jet engine unit to the air-
frame stability is the effect of the jet-induced downwash
at the horizontal tail. This is caused by the high-
velocity jet exit stream sucking in the slower-moving
air in the vicinity of the jet,

In practice, this effect need be considered only for those
configurations where the jet blast passes under or over
the horizontal tail surface. On airframe configurations
where the jet exit is located in the extreme rear of the
fuselage and the tail surfaces are ahead of the jet exit,
this flow effect may be neglected,

" The resulting change in downwash varies with angle of

attack of the airframe and with the jet velocity,

As far as affecting any of the stability derivatives used
in dynamics i8 concerned, the jet-induced downwash
modifies primarily the static stability derivative C,

since the jet deflection Is a function of angle of attack .
However, as stated, this is found to be small. No doubt
there would also be contributions to derivatives such
as C,. and Cays but no pertinent information seems

avallable at present,

When an afrframe {s sideslipping there is an asymmetric
inflow into the blast of the jet or jets which induces a
sidewash at the vertical tail, For instance, for an
aircraft configuration similar to the Gloster Meteor ,
where the jet engines are mounted outboard along the
wing, the lateral derivative cnﬁls reduced because of

this jet-induced sidewash effect; however, no infor-
mation on the magnitude of the reduction is available ,

th) EFFECT OF UNSTEADY FLOW

Although the effect of unsteady flow on stability de-
rivatives has been taken into consideration for many
years in aerodynamic flutter, only recently has this
effect become important in stability and controf con-
siderations, mainly as a result of the higher operating
speeds of today's aircraft,

Most unsteady flow effects arlse from the fact that the
final steady lift caused by an abrupt change in angle of
attack of a lifting surface does not occur instantaneously .
This Is illustrated in Flgure IV-37, for a two-dimen-
slonal wing. The time to reach 90% of the final Mt
value, at , varies roughly between .0 and .2 of a
second, depending on the geometry of the wing und the
speed at which 1t {s {lying.

For an oscillating wing, where the angie of attack is
varyly sinusol Wly, the it will follow sinusodally but
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Figure IV-37 Lift Build-up Due to an Abrupt
Change in Angle of Attack

Time ——

{ts magnitude will be smaller than that of the non-
oscillating wing; in addition there will be a phase dif-
ference between lift and angle of attack. This unsteady
flow effect s a function of the frequency of the oscilla-
tion and also of the Mach number at which the oscillation
is occurring,

Before examining this, however, it is necessary to
understand how unsteady flow effects are introduced into
the equations of motion, In accordance with the practice
adopted in this chapter of writing aerodynamic forces
and moments in terms of conventional stability deriva-
tives, the latter must be considered as functions of fre-
quency because of unsteady flow effects. For example,

Cp(a) -CLCL a*CL;‘ AOCL.& .&OCLQ quLa q

’CLSE L 'CLSE SE'CL'EE sp

where the derivativesC,_, C.,, C., etc. are various

functions of frequency.

To represent frequency-dependent stability derivatives
mathematically for use in the equations of motion, it is
convenient to express them as complex numbers, For
instance,

CLa («) 'RCLa (a) + iICLa (a)
Imaginary Axis

Vector Representing Chu

—] 0
- 05 Real Axis
.10

we A=0
w R-6
(n) Mach Number = .5

where R and I indicate the magnitude of the real and
imaginary components respectively, of the complex
number C, (w) . When the frequency of the oscillation

is zero, the imaginary part,IC, («),i8 zero and
Cp, («) »RCy_(«) Indicating that the derivative C, Is

acting exactly in phase witha . This is the usual con-
cept of a stability derivative when unsteady flow effccts
are neglected.

As an {llustration of the effects of frequency and Mach
number on stability derivatives as far as unsteady
flow effects are concerned, consider Figure 1V-38.

By referring to Figure IV-38b, it may be seen that
when the reduced frequency,ac/2u,has the value 0. 10,

the magnitude of c,, is reduced to about 90% of the
steady flow value(c/2u~ ), and C., has a phase lag of

about 16" compared to a. Notice also that a component of
€., along the imaginary axis can be considered a con-

tribution to the derivative Cy; a contribution which in

this case enters the osclllating system as an undamping
effect, since it represents a force 180° out of phase with
the angular velocity of the system. Moreover, even
though the magnitude of this imaginary component may
be small compared with the original vector of Cp s it
can contribute a large percentage change to Cy; - A

comparison of plot (a) with plot (b) shows that an in-
crease in the Mach number from .5 to .8 accentuates the
effect of reduced frequency.

In general, all the aerodynamic derivatives of an air-
frame behave in a similar manner. It is clear therefore
that the effect of unsteady flow on conventlonal stability
is to change them from real numbers to complex num-
bers, the real and imaginary parts of which are func-
tions of the frequency of the oscillation and the Mach
number at which the oscillation is occurring.

The question is this: at what values of frequency and

Mach number do unsteady flow effects become so im-

Imaginary Axis

x—Vu(:tur Hepresoenting CL
-1

>0
\\‘~Z-(>- 05 Real Axis

. 10

e

2t

(L) Mach Number =.8

Figure IV-38 Effect of Reduced Frequency and Mach Nunber
on CLa of a Wing(Reference 7)
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portant that they must be considered in evaluating stabil-
ity derivatives? Theoretical calculations on the longi-
tudinal short period mode of a typical jet fighter airplane
(F-80) indicate that the contributions of unsteady flow
and the inclusion of higher order derivatives in the
equations of motion are not important for subsonic
speeds in the frequency range of 0 to 8 radians per
sccond. * Flight test data on this airplane have sub-
sequently verified this conclusion.

Other theoretical calculations on the longitudinal short
period mode agree with these results for conventional
aircraft with horizontal tails; however, for tailless alr-
craft or aircraft with short tall arms unsteady flow may
be quite important. Pinsker shows that the deterioration
in pitch damping of tailless aircraft is particularly
severe when c, g, positions are forward, **

Pinsker also shows that a rapid deterioration of direc-
tional damping due to unsteady flow occurs at Mach
numbers beyond 0.6 for conventional aircraft. Although
his presentation of flight test data on the British Meteor
seems to substantiate this conclusion, flight test data
on various other jet fighters and transonic research air-
craft do not indicate so detrimental an effect.

*Statler, 1.C., 'Dynamic Stability at Hiyl Speeds
from Unsteady Flow Theory,' Journal of the Aero-
nautical Sciences, XVII, No. 4 (April 1850), 232-
242, 255,

** Pinsker, W.J.G., ‘A Note on the Dynamic Stability
of Aircraft at High Subsonic Speeds when Consid-
ering Unsteady Flow,' Royal Alrcraft Establishment,
Report No. Aero., 2378, Farnborough, Hants, May 1950.

Chapter IV
Section §

In spite of the great progress in unsteady flow rescarch,
it appears that no definite conclusions can be drawn
at present concerning the conditions under which un-
steady flow should or should not be consldered in evalu-
ating stability derivatives. The following digest of
findings by Milliken (Reference 2) and others, summa-
rizes the present status.

For conventional aircraft configurations (i.e., those
not too heavily swept), unsteady flow effects in the re-
duced frequency range 0< ;-% <=, 10 are unimportant in

the entire subsonic range for the longitudinal case. This
conclusion essentially applies in the supersonic range
except that the downwash lag derivative C . and possibly

the horizontal tail lift curve slope must be considered
in complex form. In the transonic range (=.85<M<xl,2)
some theoretical considerations suggest great effects,
but no supporting practical evidence is avallable, For
aircraft configurations without horizontal tails or with
short tail arms, unsteady flow effects are probably much
more important,

Although little research in unsteady flow has been done
for directional oscillations, it i3 conjectured that the
same general conclusions as were reached in the longl-
tudinal case are applicable here.

In evaluating the effect of unsteady flow on stability
derivatives, there is one final word of caution., Most
of the available literature is restricted to the gpecial
case of steady state sinusoidal oscillations. Numerical
values of stability derivatives obtained from these ref-
erenceg are not applicable either to damped sinusoidal
oscillations or to aircraft responses to arbitrary control
motions which are not sinusoidal in shape.

SECTION ~ 6. FACTORS THAT DETERMINE THE DIMENSIONAL STABILITY DERIVATIVE PARAMETERS

Once the aerodynamicist has evaluated the basic non-
dimensional stability derivatives for a particular air-
frame configuration, these derivatives must be con-
verted to the dimensiondl parameter form to be used
in the dimensional equations of motion.

Reference to the conversion tables (IV-3 and IV-4 in the
Appendix to this Chapter) will show that the multiply-
ing factors used to convert the basic non-dimensional

derivatives to the dimensional parameter form consist

of various combinations of the {ollowing variables:
1. c.u,s (airframe geometry}

2. 1,11, {airframe mass and mass dis-
tribution)

3. p.u(flight condition}

For example:

It can be concluded that, in general, dimensional stabil-
ity derivative parameters are direct functions of air-
framce geometry, of mass and maus distribution, and
of flight conditions, in addition to being functions of the

basic non-dimensional stabjlity derivatives which are
in turn implicit functions of alrframe geometry, mass
distribution, and flight condition.

In Section IV-4 it was shown that, in determining the
values of the basic non-dimensional derivatives, the
airframe configuration is usually the primary factor,
with flight conditions and especially the Mach number
being of secondary importance and merely modifying
the primary value established by the airframe configu-
ration. In determining the dimensional stability deriva-
tive parameters, however, notice that the values depend
directly on the flight conditions o and U. This i3 im-
portant, because the effect of flight conditlons is so
great that, in general, the values of the dimensional
stability derivatlve parameters can be said to be func-
tions of both the airframe configuration and its fliyht
condltion, since these effects are of equal importance
as far as the above parameters are concerned.

In numerous general inveatigations of aircraft stability
and control of the past, the variables in the multiplying
factors listed at the beginning of this section were
grouped into such forms as:

T :':U Acrodynamic time (airsec)
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Chapter IV

Scction b

e = BISD'T Longitudinal relative alrplane density Some of the common combinations suitable for general

u studies are:

iy Lateral relative alrplane density
By the use of these parameters, ,u,., and 4, , it was R . 2 Wing aspect ratio
shown how certain stability and control characteristics s
of aircraft could be generalized. However, in most of
these Investigations, the basic non-dimensional deriva- . Wing loading
tives were tacitly considered independent of all the 5
factors discussed in Section 4, such as Mach number
and dynamic pressure. In other words, they were not qe8y2 Dynamic pressure
considered functions of 7, u ., and u,. 2 da P
Today, because of the increased importance of Mach .0 (¥
number and aeroelastic effects, the dependence of the G q (s) Lift coefficlent

basic non-dimensional stability derivatives on flight
conditions can no longer be ignored, and the validity of
these rather s{mple generalized studies when applied to
modern jet aircraft is questionable. Therefore, it is
felt that the once popular forms r, »,, and u, have lost

2 2 2
b, -b-) ()" Non-dimensional {nertia parameters
k) (&) (&,

much of thelir significance. A consideration of some of It is also convenient to express the flight conditions in
the slmpler combinations of the variables appears to terms of Mach number, M, and pressure altitude, b ,
be in order in generalized studies. rather than in terms of o andvu .
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CHAPTER V
METHODS OF OBTAINING STABILITY DERIVATIVES

SECTION 1 - INTRODUCTION

The purposes of this chapter are to present a brlef de-
scription of various methods and techniques in use today
for the determination of numerical values of stability
derivatives and to discuss the relative accuracies of
these methods. The primary reason for the inclusion
of this material {s {ts value to the designers of the air-
frame, the control surfaces, the control actuators, and
the autopllot. These engineers must necessarlly be
concerned with the interpretation of aerodynamic sta-
bility data and with the evaluation of the accuracy of
these data if they are to arrive at an integrated system
design.

Considerations relating to the accuracy with which aero-
dynamic data are known are of extreme {mportance in
the integration of system design. For example, it is
quite possible that the estimated stabillty derivatives
for a given airframe may be known to be inaccurate,
perhaps due to Insufficient or questionable basic infor-

mation from which to compute the derivatives; this is
particularly true, of course, in the transonic reglon.
If the designers of the specialized components are all
alert to this situation, thelr various apparatus can then
be designed with sufficient tolerances to take into account
the potential inaccuracies of the derivatives.

In general, there are three methods of obtaining stabllity
derivatives which can be listed in the following order of
Increasing accuracy:

1. Estimating from theory and related empirical
data.

2, Model testing.

3. Full-scale flight testing.

Each of these three methods will be considered In the
following pages.

SECTION 2 - ESTIMATING FROM THEORY AND RELATED EMPIRICAL DATA

In the preliminary design stage of an integrated air-
frame-autoptiot-controls system, the exact configuration
of the airframe is not known; consequently, stability
derivatives must be estimated in a rather general man-
ner to establish their ranges of values. Since it {s im-
practical to perform model tests on all the various con-
figurations which may arise at this stage of the design,
the necessary stabllity derivative data can be obtained
only from theory and from related empirical data on
similar airframe configurations.

In general, the recommended procedure is to assume,
first of all, a certain airframe configuration or a strictly
limited range of configurations. Then, by consulting
a few basic theoretical reports, stability derivatives for
the low subsonic region can be estimated, References 1
and 2 are very useful {n determining the characteristics
of the wing alone. References 3 and 4 provide a means
of estimating the longitudinal derivatives for the com-
plete airframe, and Reference 5 summarlzes rather
completely the lateral derivatives for the complete air-
frame.

The next step.dsto estimate the effect of Mach number on
the stabllity derivatives in the subsonic region (<M< .8)
by applying the Prandtl-Glauert rule of compressibility .
This method consists of modifying the lift curve slopes
of the wing und the horizontid and vertieal tauils as fune -

tions of Mach number, References 5 and 6 provide
methods of procedure and design charts for this modifi-
cation,

For the transonic- and the low supersonic region
(.9<M<1.5) , theoretical methods of determining stability
and control derivatives for the complete airframe are
practically non-existent. As a result, the designer
must resort to various empirical data on similar air-
frame configurations. But because there s no theory
which can be used as a gulde, the trends indicated by
empirical data are difficult to correlate, and this prob-
lem is further complicated by the fact that the data ob-
tained by all the various techniques applicable to tran-
sonic investigations may be unreliable or inaccurate
or both. Apparently the best method of estimating sta-
bility derivative values in the transonic region at present
is to use correlation plots showing the variation of the
stabillty derivatives with Mach number, for various
types of aircraft,

For the supersonic region (M > 1.5), limited theorcticul
methods are again available for estimating values of
stability derivatives. In general, the higher the super-
sonic Mach number, the more reliable the theory, He-
ferences 5 and 7 present very good sumnuiries and
bibliographies of available literature for estimuting




ovsonde derivatives of wing-alone conflvurations.
Theosctient researeh relating to complole atrfruame
i

copte eeutions of winer, body, and tall, and to the fuse-
ciutrd autaal tterference cifeets, has been very linit-
o4, ond the desighor niust apgain resort to empirical
dots ond Lo corvelation plats,

¢

Alter the deslgner has estimated the Mach number
effeets on the stability derivatives, he should consider
the huportant effects of any of the other factors dis-

SECTION 3 -

T'e increase the accuracy of the stability derivative esti-
mates Bused upon theory and related empirical data,
inodels duplicating the geometry of the contemplated full-
scale airframe are usually bullt and tested. In fact,
mode!l testlng has become such an important sclence
that It is now considered indispensable to aircraft de-
velopment.

In applying the results of model tests to the full-scale
alrplane, there is an important scale relationship which
must be taken into account in the interpretation of data .
This scale relationship of geometrically similar objects
Is given by the non-dimensional parameterpyi/,, which

is called the Reynolds number of the particular scale-
flow combination. In this parameter, o Is the density
and ;. the viscosity of the medium (air) through which
the body moves; vV is the forward veloclty of the body
with respect to the medium; and | is some character-
Istic length of the body (usually the mean aerodynamic
chord of the wing) mzaasured in the direction of the alr
stream,

When the Reynolds numbers of two flows are equal, the
flow characteristlcs are dynamically similar, Assuming
a model and 2 fuil-scale aircraft operating at the same
speed in the same atmospheric conditions, o, V, and
u are the same, but the Reynolds number of the model-
flow combination is lower than the Reynolds number of
the airplane-flow combination in direct proportion tc the
size of the model,

Full-scale aircraft operate in a Reynolds number range of
6, 000,000 to 100,000,000, whereas model testing is done
in a Reynolds number range of 500,000 to 10, 000, 000 .
Stability derivative data based on model tests per-
formed at Reynolds numbers of 6,000, 000 or more may
be considered directly applicable to the full-scale air-
plinte, but if the model tests are performed at Reynolds
numbers of less than 6,000,000, it is likely that the
stability derivative values will require modification
before they can be applied to the full-scale airplane .
One cf the difficulties in using model test data Is that
the effects of Reynolds number are in most cases quan-
titatively unpredictable, and the correct interpretation
of the data is luargely u matter of judgment based on
vrperwencee,

There are two gencral types of model testing: wind tunnel
Lesting and modet flight testing. These types are con-
sidered fiodetad] in the following pages.

() WIHD TURHEL TIST

cussed in Saction 5 of Chapter IV, For exnmple, with
a sweptback wing of mederate aspect ratio, acroclastic
effects on the stabillly derivitives are quite timportant
and must be taken into accuant.

Generallzed design procedures for evaluating the eflcet
of these factors on stability derivatives are not avall-
able. Each effect must be Investigaled In the light of its
particular application,

MODEL TESTING

The present day wind tunnel is gererally recognized as
being almost indispensable in obtaining aerodynamic in-
formation concerning specific aireraft design configu-
rations. Many different kinds of wind tunnels are in use
throughout the country, each of which has its particular
advantages for certain types of testing, Most of them
can be classified as '"conventional type tunnels."

1. Conventional Tunnei

In general, the conventional wind tunnel consists of a
tubular channel forming a closed circuit through which
air is circulated at high velocities.

During tests in this type of tunnel, the model remains
stationary, and the various aerodynamic forces and mo-
ments acting on the model are measured by means of a
balance system ar by strain gages mounted on struts
to which the model is attached.

Conventional wind tunnel testing is concerned with deter-
mining the derivatives which are not rates of change with
time, the so-called "'static” stability derivatives. The
usual practice is to obtain six basic data; three forces,
lift, drag, and side {orces; and three moments, pltching,
yawing, and rolling moments.

In the longitudinal case, the coefficients ¢, c?] and ¢

are functions of angle of attack a; therefore, the static

derivatives €, , C; , and C, are obtained from wind
a a a

tunnel data,

In the lateral case, the coefficients ¢,, C,, and C, are
a function of sideslip angle 8; therefore, the derivatives

C, , C,, and C; are obtained from wind tunnel data.
A B B

Also obtalnable from these tests are the control effec-

tivenesses and the related derivatives such as: CLl

E

and €, for the elevator; €, , €, , and(C; for the
L3 5 ] 1]

E R R
rudder; and C’b , C“» and C's for the aileron. More-
A A
over, the control surfuce hinge moment parameters can

be obtained, such as:

g Gy ?F"u_ ?Cf'ﬂ, aL"A ?gh
abg' E)u'-?ﬁb“' 3t “A' da

Finally, the majority of testing programs tnvolving




atrframe configurations in conventional wind tunnels
include the determinaticn of the characteristics of alter-
able airframe geometry; such as flaps, slats, speed
brakes, landing gear, and so forth. In addition, the
effects of power and {ree controls are sometimes ob-
tained,

Wind tunnel data are not always as accurate as might be
destred and the results must be interpreted by experi-
encgd personnel. For some stability derivatives, such
as CLQ, the experimental results provide satisfactorily
accurate values; in cases such asCp, C, , Ca, » C‘s )
e E A
the wind tunnel data may not be directly applicable to the
full-scale airframe because of Reynolds number and
aeroelastic effects,

Some of the sources of error in conventional wind tunnel
testing are;

a, Scale effects due to the low Reynolds number of
the test.

b. Choking phenomena at high subsonic Mach num-
bers.

c. Inaccurate corrections to the data, such as tare
and alignment corrections and wall corrections.
d. Incorrect duplication of power effects.

e. Inaccurate representation of drag by omission
of some protuberances.

f. Use of solid wood models having lower percentage
structural deflections under load than does the air-
plane.

g. Mechanical and instrumentation discrepancies
involved in the measurement of forces and moments.
h, Human errors that are likely to occur {n the
testing and data reduction.

An understanding of the sources, the Impdrtance, and
the correction of errors is essential for interpreting
the results of wind tunnel tests. Reynolds number effects
appear to be prominent among these sources of error.
For example, at low Reynolds numbers, there is a
tendency for boundary layer separation to occur at a
lower angle of attack on the model than on the full-scale
airplane, thereby causing earlier changes in such de-
rivatives as Ca, Co, and c;ﬁ, as functions of equilibri-

um angle of attack,

In spite of such limitations, wind tunnel testing is a
powerful tool in the hands of the designer if he exercises
great care in test procedures and in data interpretation .

2. Rolling Flow Tunnel

The basic purpose of the rolling flow tunnel is to dupli-
cate, as accurately as possible, the flow pattern con-
ditlons which extst around the alrframe when it executes
a pure rolling motion in actual flight, ‘The rolling flow
technique can glve experimental values for the three
stability derivatives due to rolling velocity, p ; they
are: the side foree coefficient due to rol, ¢, the
1Y

yuwing monient coutfielent due to roli, ¢, ; and the roll
14
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damping derivative, €, .
P

There are two different testing techniques used to simu-

late the rolling motion of the atrplane. The first of these
has been developed at Langley Field where NACA has
constructed a stabllity tunnel having a balance system
which cap be rotated. The model to be tested is mounted
upon a support which Is free to rotate, and a small aux-
iliary controllable-piteh atrfoil, which s attached to an
arm on the model, creates the force needed to rotate
the model. This technique is called the "rolling-wing"
methaod, ‘

In the second technique, also developed by NACA, the
model is held stationary and the airstream {n which the
model {8 immersed s rotated by means of a rotor equip-
ped with a series of curved vanes. This technique iscall-
ed the "rolling-flow'" method,

One advantage of the rolling-flow technique over the
rolling-wing technique s that it permits all forces and
moments to be measured with the model mounted on a
conventional balance system. But on the other hand,
this method does not exactly simulate the conditions of
an airplane in steady roll or of a model in forced rota-
tion, for there is a buildup of static pressure near the
tunnel walls due to centrifugal force acting on the rotat-
ing alr, which results in a pressure variation along any
radlus, a condition which does not exist when an airplane
rotates, However, this pressure variation effect prob-
ably does not play an important part n most tests.

Both these techniques appear to be attractive methods
of obtaining rolling moment derivatives; data obtalned
from tests show them to be in cons stent agreement, and
in addition, such data check closely with calculated
values of C,p. *

3. Curved Flow Tunnel

The curved flow technique of measuring stability de-
rivatives due to yawing velocity, r , and to pitching
velocity, ¢ , Is somewhat gimilar in principle to the
rolling-flow technique. The air flow in the wind tunnel
follows a curved path in the vicinity of the model and has
a velocity varlation normal to the circular arc stream-
lines in direct proportion to the local radius of curvature
of the flow. Such a flew Is made possible by usinga
curved test section in combination with a variable-mesh
screen designed to form a reduced velocity reglon on the
inner side of the curved section,

MucLuchlun, Roburt, md Letko, Williae, Corrclation
of Pwo Expertmentul Methods of Determining the Rolling
Churncteristic: ol Unswept Wings,’ NAUCA Techoleal
Note, TN L3y, Langley Meworinl Acvonsutical Labora-
tory, Lungley Field, Yu., May 1947,
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The model is {ixed to a conventlonal balance system,
and the forces and moments acting on the model are
measured as functions of etther yawing velocitles or
pltehing velocities depending upon the orlentation of the
model with respect to the curved flow., By this means
it is possible to determine the stability derivatives C

v
¢c ,c,,c, ,andc
Ir lq o

n

q

The curved flow technique does not exactly reproduce
the conditions of an airplane flying in a curved path,
since, for the model, there is a static pressure gradient
created by the centrifugal forces on the air mass In
rotation, which causes an apparent lateral buoyancy.
Corrections for this effect can be calculated and applied.
This static pressure gradlent also produces a tendency

for boundary layer air on the madel to flow toward the
center of rotation, a tendency opposite to that in actual
flight. This effect cannot be evaluated accurately at
present, but it is known to be of secondary importance .

Turbulence 1s also a secondary complication not readily
amenable to mathematical analysis.

Reasonably good agreement has been reported among
the curved-flow technique, the free oscillation technique ,
and the calculated results.* In general, data obtained
from the curved flow tunnel tests lndicate satisfactory
measurement of the rotary characteristics caused by
yawing or pitching velocity, and the accuracy attained
is considered superlor to that of such other techniques
as the various oscillation and whirling arm methods.

4. Oscillation Tests

Another method of attacking the problem of evaluating
the rotary damping derivatives is the model ostiliation
technique. This method requires either (1) free oscilla-
tion or (b) forced oscillation of the model. In either
case, the model s mounted in a conventional wind tunnel
on a single strut and is free to rotate essentially as a
one-degree-of-freedom system in either pitch or yaw .

In the free oscillation method, a torsion spring provides
restoring moment, so that a damped oscillation results
from merely displacing and releasing the model. An
oscillograph or high-speed motion picture camera re-
courds the resulting motion, The total damping s then
evalualed from the decay of the amplitude of the oscll-
lation,

The foreed oscillation method is somewhat more com-
ples, for {t requires a miechanism desfgned to maintain
u steady osclifation by applylng o sthusoidally varying
yawing or pitching moment. Oscitlograph or photo-
prruph records wre analyzed for ungle of piteh or side-
sHp, angular acceleration, and sipplied moment,  Fram
there dida, the moments acting on the model at zero
acceleration can be determtned, and tram these mo-

it inctura, the doaping derivatives can be obtadned,

V-4

Data dertived by the forced oscillation procedure are not
expected to be as accurate as those obtained by the free
osciliation technique because of the difficulty in ob-
talning records free from random disturbances, On the
other hand, forced oscillation enables one to determine
results {n the high lift coefficient range where difficulty
Is experienced with free oscillation.

It should be pointed out that either of these oacillation
techniques gives the total damping of the system which
in the longitudinal case (pitching) is (qu +C, ) and in the

lateral case (yawing) is (c, - C"B)' Thus, the individual
r

, and

values of the damping derlvativesc_ , C,, ,C
9 r

a n

Cn)3 cannot be determlined from oscillation tests alone,
since the total damping obtained is composed of the sum
of the respective palrs,

If the values of ¢, and c, are determined for a parti-
r

9
cular model by means of the curved flow technique, it
Is theoretically possible to determine the derivatives
Cnp and ¢, Dby performing oscillation tests on the same

model.

In practice, however, the use of this procedure may be
somewhat limited by the inaccuracy of the data involved
in the two types of testing.

Comparisons of free oscillation and curved flow tech-
niques indicate satisfactory agreement for moderate
lift; however, at high 1ift coefficients, differing values
of C“.- are obtained by these two methods, **

Further compartsons of the results obtained {rom both
free and forced oscillation technigques with those from
curved flow technlques lndicate satisfactory agree-
ment, *

5, Free-Flight Tunnel

In the free-flight tunnel technlque, the model is not
attached to any sort of balance system, but Is allowed
to move freely within the test section of the tunnel. The
model has movable control surfaces, and its motions

* Bird, John UL., Jaguet, Byron M., and Cowan, John W,,
‘Effect of Fuselapge and Tall Surfaces on Louw-Speed
Yawing Churacleristics of w Swepl-Wiang Model as Deter-
mined in Curved-Plow Test Seetion of Langley Stubility
Tunnel,” NACA Technleal Note, IN 2483, Lungley dcumoried
Acronauticul Luboratory, Lungley Fireld, Va., UOc-
tober 1951,

o Goodmin, Alex, and Fedpenbopum, David,  Prelimtnary
Investipaton al Low Spreds ol Swept Wings in Yawing
Plow, ' NAUA Roesce rel Memornndum, B8 B9, Laneley
Aenorlad Aviopancic al Lubovutory, bangley Freld, vua.,
Fobauary oF, 1990,




can be controtied by a human "pilot" who flies the model
as he would a full-scale atreraft,

The free-flight tunnel Is not used primarily to obtain
specific numerlcal values of stability derivatives, but
rather to study the general stability and control behavior
with reference to desirable flying qualities from a pilot's
viewpoint, However, it is possible to obtain quantitative
stability derivative data by analyzing motlon picture re-
cords of the response of the model to control inputs .,

The advantage of this free-flight technique is that the -

low speed overall dynamics and handling qualities of a
particular aircraft configuration can be investigated in
the preliminary design stage. Various characteristics
can be determined, such as elevator required to trim,
damping and period of the longitudinal and lateral oscil-
latory modes, spiral stability, response to control in-
puts, and stall behavior.

Some of the data from free-{light testing have been found
to conflict with full-scale test data. * The earlier bound-
ary layer separation on the model due to the lower
Reynolds number very likely accounts for the largest
portion of the disagreement. Stall characteristics are
not too clearly demonstrated by the free-flight model,
and spiral stabllity is difficult to measure; but the test
Is useful for comparlisons between different flight con-
ditions and different configurations. Considerable
scutter in observations is Inevitable because steady con-
ditions cannot be obtained before application of the con-
trols,

These various Inconsistencies and quantitative dis-
agreements with full-scale data are appreciable, but
it is believed that, with an understanding of their nature
and magnitude, correct general conclusions can be drawn
from the model data regarding the stability and control
of the alrplane represented, particularly where an eval-
uation of the relative merits of different modifications
is desired,

6. Whirling Arm

The whirling arm was one of the earllest experimental
methods devised [or testing models. In this technique ,
the mode! and its balance system are attached to a long
arm, and the whole assembly is rotated at high speeds .
By this meuns, yawmg (or pitching) motion of an airplane
is flight is simulated, and it is possible to determine
values of dertvatives such as ¢, r, Ca s C‘r, th, and

Ca, -

Unfortunately, the model operates in the turbulent wake
created from each previous revolution of the apparatus
and this imposes a severe Hmltation on the accuracy and
consistency of the data obtained. In addition, the balance

* Shortul, Joseph A., and Ostevhout, Clayton J.,
‘Prolininary Stubility and Control Tests in the NACA

Pree-light Tunnel apd Correlation with Pull-Sculve
Filght Tents,! NACA Techntcal Nolye, TH 810, Lungley
Memorial Acrenautleal Luoboratory, Langley Pield, Vu,,
Junce 1idl.
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system is subjected to centrifugal force due to the rota-
tion, and large corrections must be applied to account
for this effect.

For these reasons, the whirling arm technique is no
longer widely used; it has been replaced by the more
accurate curved flow tunnel technique.

7. Transonic Bump Tests

Wind tunnel testing in the transonic range is extremely
difficult and unreliable in conventional tunnels because
of choking phenomena between the model and the tunnel
walls,

One method of obtaining data in the transonic region is
to modify existing high subsonic wind tunnel test sections
with a suitably contoured bump on which small reflection
plane (half-span) models can be mounted. Even though
the tunnel is operating at subsonic speeds, the increase
in flow velocity over the bump creates a localized area
of transonic and supersonic Mach numbers. Because of
the small size of the model used, tunnel choking phe-
nomena are avoided, .

One disadvantage of this method is that the local increase
in velocity over the bump is not uniform; there is a velo-
city gradient as a function of distance away from the
surface of the bump. This means that the model is sub-
jected to a Mach number gradient in the direction of the
span.

Another disadvantage of this method is that the data are
obtained at low Reynolds numbers because the models of
necessity must be very small - approximately six inches
in half-span.

The Mach number gradient and th.: low Reynolds numbers
of the tests are the inevitable penalties for the avoidance
of choking, and they sometimes constitute sufficient
reason for skeptical attitudes toward bump model test
results,

From transonic bump tests only static longitudinal sta-

bility derivative data can be obtained such as Cp , C“u‘

Cior Gy €y 2Cay Cas and Ca,
E E

Because half-span modeis are used, no static directional

stability derivative data are obtainable.

8. Supersonic Tunne}

At the present time, the design trend for supersonic
tunnels is toward the conventional tunnel arrangement
through which the alr or any special gaseous working
fluid is clirculated continuously in a closed circult,
Other arrangements have been or are being used, how-
ever. In the ""blow down' type tunnel, for example, the
air is pumped under pressure into a large reservolr
before the test and is released during the test to atmos-
pheric pressure through a model test seetion in which
supersonic veloclties are attained.

The models are usually sting mounted, and the forees




Cosoer
Soetion d

admoments ave measured by werns of electrical strain
s, Both statie tonrvitudinal data and directional
stability datia can be obtlained,

Because of the larpe amounts of power required to drive
the air at very high velcelities tn the conventional tunnel
arrangement, the size of the tunnel must, in practice,
ba kept small, a restriction which in turn places severe
Hmitations upon the size of the madels to be tested. The
resulting large difference in Reynolds number between
the mmodels and the full-scale atreraft makes the inter-
pretation and application of most supersonic wind tunnel
data on stability derivatives difficult.

(b) MODEL FLIGHT TEST
1. Transonic Wing Flow

The NACA wing flow method is similar in principle to the
bump test model method because the manner of inducing
supersonic flow is the same; in this case the wing of a
full-scale alrplane serves as ths ‘bump.

The model, which must be very small, is placed on the
wing of an airplane in the vicinity of the maximum thick-
aess; the manner of mounting ls similar to that of the
bump method. A motor-driven device for rotating the
model and a mechanism for measuring {orces and mo-
ments on the model are incorporated in the wing, When
the alrplane is flown at hlgh subsonic speeds, the model
{s immersed in the lncreased velocity zone on the upper
surface of the wing,

The testing procedure conslsts of diving the airplane
from some predetermined high altitude so that the Mach
aumber on the wing varies through the transonic range,
During the run, recording instruments provide a con-
tiruous sequence of airplane flight data and model test
data.

In addition to providing static longitudinal, and lateral
stability derivative data, the wing flow method can also
be used to obtain directional dynamic characteristics in
a manner similar to that of the model oscillation tech-
nique described earlier. When the wing flow method 18
used with half-span models as s ordinarily done, only
static longltudinal data are obtainable,

The wing flow method {s subject to somewhat greater
Hmitatlons than the bump test method. Only one con-
figuraton can be tested during a particular flight because
the alrplane must return to the ground for changes in
the model configuration, This procedure is costly and
time-consuming for a systematic investipation of a large
amliy of configurations., However, for tests on a par-
ticulur model configuration, the method appears to be
somewhat more practical,

Another Hmitation Is the difficulty of malntaining steady
test conditions on the model, During the dive of the
i bane, the anotion of it controls must be kept to a
e, atd o, pherte turbulence must be avolded
SideJ dnpde and rolline velocttly of the alrplime can
Steanticn by wect the flow pattern over the model, and
In Lume Cies devieens for measuringg the local flow

dircetionhiove been emclorc o covveet foe e 5o ety
Sharp devintlons from cined gty bt cenditicns con reader
the data fnapplicable. C¢ course, none of thene foctory
enters into the ordinary procodares of vhal tunnel test-

ing.

Up to the prescnt time, comiparisons with results from
actual test flights show that the wing flow data vre {re-
quently too fnaccurate for upplication to full-scule de-
sign. Here again, accuracy is lest because of the great
departure fram full-scale Heynolds number, a parameter
which is necessarily low In most experimental work on
models, In a fixed Mach number range, the only two
variables affecting Reynolds number that the designer is
at liberty to vary are the size of the modcel aud the den-
sity of the air mass, The meodel slze is limited by the
physical dimensions of the transonic flow ficld over the
wing, and density is determined by the altitude selected
for the test and by the temperature of the atmosphere.
The wind tunnel bump test method, on the other hand,
allows the density to be Increased considerably in vari-
able-density type turnels, Considering all these factors,
it appears that the bump test method has some advan-
tages over the wing flow method,

2, Ballistic Tests

The techniques involved in the study of projectiles fired
from guns have been adapted to test missile and alrplane
configurations, The model, constructed of solid metal
and carrying no power or instrumentation, is launched
or fired from a special gun, and during its flight, it
passes a serles of photograph stations which provide a
shadowgraph history of the trajectory. From these
photographs, the spacial orientation of the model is
obtained; and from this orientation, the linear and angu-
lar velocities can be derived,

This technique has been used successfully in studying the
rolling characteristics of certain model configurations
and in obtalning the alleron effectiveness derivative
Ci, and the roll damping derivative Czp .

A

An advantage of this technique is that the models ure
flown through undisturbed air; the main disadvantige
is that the models are small, resulting In very low test
Reynolds number.

3, Free-Fall Model Tests

One method which has been usied to attain transonie Mich
numbers in model testing conststs of carrying the modeld
to high altitudes and then dropping it to earth, thus tsing
gravity as the source of power. During its deseent, the
moda] s tracked by radar and optical tracking equipment
to determine its general flight path, The model oo be
equipped with radio-operited controls and with v lru-

mentation for determtning the cesponse of the model to

* Bulz, Ray B, aod Nicolatdes, John Do, A dethod ot
Determining Some Acrodynonie Coctiieioents Lo baper-
sonle Froe-Flight Tests ot oo koliog Mussdte,” Journal
ot Lhe Acronautical Science:s, XvIT, Moo 10 (Uctaber
1ubu), wOH-621,




the control inputs.  These response daty are telemetered
to pround stations,

The chief advantage of this method {s that large models
car be made to pass gradually through the transonic
reglon under truly free-air conditions; its main dis-
advantage {s that the mudel and its costly instrumentation
are destroyed upon impact with the ground.

This method has been used mainly to study lift and drag
characteristics of various wing configurations on mis-
slles. The application of the free-fall technique to
determining dynamic characteristics of models has not
been developed to any great extent, and it appears that
any developmental work along these lines has been
superscded by the rocket-powered model technique ,

4. Rocket-Powered Model Tests

The most promising of the free-fllght model techniques
is that employing rocket-powered models. This tech-
nique does not differ greatly from the drop-test method
except that the model carries its own power in the form
of a rocket. The model is accelerated to supersonic
speeds by means of a booster rocket, which then sepa-
rates from the model, permitting the model to coast back
through the transonic region, In some cases the model

Cannt e VY
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itself carries a small additional rocket motor waich
extends the testing run time,

The model contains instrumentation to pick up its dy-
namic motions, and these data are telemetered to ground
stations, Provisions are made efther to pulse the con-
trols of the model or to fire very small rockets aligned
in a direction perpendicular to the center line of the
model, .thus producing input disturbances,

The rocket-powered model technique shares with the
free-fall technique the important advantage that large
models can be tested with correspondingly large test
Reynolds number. But it also shares the disadvantage
that the costly model is destroyed upon {mpact after the
test run is completed.

If the instrumentation and telemetering equipment is
sufficiently accurate, static and dynamic stability de-
rivative data can be obtained from these tests in a man-
ner similar to that for full-scale dynamic flight testing
techniques described in the next section.

Aeroelastic effects on stability derivatives can be ob-
tained by this method if two models constructed of differ-
ent materials ure used; for example, if one is construct-
ed of steel and the other of aluminum,

SECTION 4 - FULL-SCALE FLIGHI' TESTING

After the full-scale prototype of a particular airplane
has been built, the estimates of stubility derivatlves
from theory and model testing can be verified and re-
fined by means of full-scale flight tests. However, such
a testing program s rarely carried out because the
time, effort, and speeial equipment involved make 1t a
very costly procedure. Optlmum flight test techniques
and data reduction methods applicable to all aircraft
have not been worked out; conscequently, alarge part of
a flight test program must necessarily be devoted to the
development of techniques for testing a particular air-
plane. In addltion, the instrumentation of the airplane
to be used in determining the frequency response and
stubility derivatives must be of higher quality than that
required merely to demonstrate satisfactory {lying
qualities. In the past, the nced for such a (light test
progruam, except for acadeniic purposes, has hardly
been great enough to justify the expense,

The main reason why these costs have not been incurred
is that the specifications which have been set up by the
military services for piloted aircraft do not explicitly
require that stabitity derivatives be obtained from flight
testing, These specifications are based to a consider-
able ¢xtent upon a large number of opinfons expressed
by pilouts concerning desirable or undesirable flying
qualitles of all types of miitary aireraft, Conuequently |
must of the full-seale fhpht testing for stabihity and
control is carried out for the one purpose of demon-
strating thut the contriuctor's particular airplance meets
these specifications,

However, these speclfleations do require {hat cevtiin
specinl flnht tert techngques be used and that certan
mancuvers be exccuted, aud from these, the vidues of

some derivatives could be obtained. For example, in
demonstrating the rolling response of the airplane due
to ailercn deflection, the dertvatives C; and C‘u could

be obtained, and in demonstrating the Duich roll damp-
ing characteristics of the airplane, the frequency of the
oscillation could be measured to give the value C“n .

The important point remains that the military services
do not require that flight tests be conducted to obtain all
the stability derivatives or to obtain the frequency re-
sponse of the airplane to control inputs from which sta-
bility derivatives could be derived, and consequently this
sort of flight testing is not usually carried out.

At the present time, it is believed that (light testing of
the full-scale airplane for the purpose of obtaining sta-
bility derivatives and frequency response data is of much
more than purely academic interest and should be con-
sidered necessary not only because of the stringent re-
quirements of the autopilot system and the control feel
system in altaining desirable flying qualities but because
today's aircraft are operating in the transonic region
where aerodynamic stability and control data from
estinmution procedures and model tests are unrehable,

In general, there are three flipht test techniques from
which stability derivatives can be obtained: (1) steady
flight technique, (2) transient response technique, and
(3) sinusoidal oscillation technique,  Each of these
methods s discussed in the followang papes,

) STEADY FLIGHT TECHNIQUES

The stewdy HLo e toehnigues deseribed here consizeof
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S dvesteedpat and leady-turntneg bt and are to Le

cloinre al b d from the cinusoldal oscillution technigue
it aendaes referred to as the stealdy slate osefls
Vi toctimbione. o ponered, the steady-straight tech-
prgques L cbnmie only o e ctebility degivatives; shave-
W stewdy-torning typy moeneuver s permit several dy-

mamic dertvadives, suchasc, and ¢, , to be olitulned.
q P

By {trst stabilizing the alrplane in straight and level
flizht at different atrspeeds and at different center of
gravity locations, and then measuring the elevator re-
quircd for trim, it is poustble to obtatn numerical values
for certaln comblnations of stability derivatives made
up of puch dortvattves auCy , G, Cayr Ciy s and C,

In muany cansos, however, the explicit value of each de-
rivative cannot be obtainod goparutoly unloss the values
of tho othor derivatived can be ansumed or eatimated
from modol tosts or a different {light test technique,

If stoady pull-up type maneuvers aro porformed at con-
stant forward spood the value of cm‘1 can bo roughly

evaluntod, {f c’"’u {s known, since the additionnl elovator
dofloction ovor that roquired for trim can be meusured,

Stendy sideslips yield duta both on the static directional

dorivatives CM , Cn/, , and c,ﬂ. und on tho ¢ ontrol deriva-

tives Cyag v gy s Cog and Ciy,. Huro aguln, howsevor,

as with tho longitudinal case, nene of the derivatives can
be wvaluatod oxplicitly unless values of soma of the
others aro asvumed, This procedure g not as diJficult
as it muy at firot appear, Flight test values of ¢, can

bo easily oblnined by moensuring the poried of the Dutch
roll oucillution; and aileron effoctiveness, c,.A , can ba

estimated fairly accurately from model tests and rate of
roll flight tests, I Coy » and c;, are known, the re-

A
mainder of the static directional derivatives can be eval-
united from the simple steady flight stde force, yawing
maoitont, and pitching moment equations:

Cylg 8“wClp D=~- c’ﬂ B
Cuyy tr*Coy, 84 ==Cny A
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vihicre r, , tho effcetive rudder arm from the cg of the
it

alrplane, can be estimated from (he atrplane’s geometry ,

Hoa oteely cate of roll can be estublished for a glven

steo e tton adlevon deflection, mueisuremaents of tho

ety ol veloettly and of the ddleron deflection re-
eyt the ralio of the derividive c; to Cle from
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demonsiration that hie whiploie mects imllitary stubitity
and control réquircments,  Theoe dita will therelore be
readily avallable for all prototype millitary alrveraft, It
may be scen, however, thal these teclniques yield ltlle
information on many of the dynawmlc derlvatives; either
the sinusoidal oscillation technique or the transient re-
sponse technique must be used to obtain such data .

(b} SINUSOIDAL OSCILLATION TECHNIQUE

Thna ainusoidal oscllation technique 1s the most eluborate
mothod of establishing the translor functlon of tho atr-
plane., Although stability derivatives cannot be obtained
directly by this mothod, it is posuible to derive values
of cortain combinations of doerivatives from plots of the
transfer function,

Sinco this flight test technique conslsis of monsuring the
sinusoldal response of the airplane to a sinusoldal con-
trol input, some sort of sine wave genorator equipment
{8 required to rctuute the control surface in the desired
manner. If the atreraft has an autopllot, it (s relutively
a simple task to feed the output of a sine wave gonorator
into the autopilot yervo motor,

The advantage of the sinugoidal oscillatlon technique in
astablishing transfer functions s that it gives fafirly
accurate rosulta over a wide range of {frequonetas. It
is useful in cortain {requoncy ranges whore the exnct
form of the transfor function g in quostion. It con also
be quite useful in establishing tho exintonce of uniteady
flow phenomena or tn correlating theoretical pradictions
of unsteady flow phenomena, since most unatendy flow
theory avallable at the present time is based on stendy
etate sinusoidal osclllations,

The disadvantage of the alnusgoidal oscillation technique
is that {t requires much more flight testing ttme than the
transient technique bacause tho alrplane must bo ata-
bilized at each value of input frequency, and many sta-
bllized polints are required io define the complete trans-
fer function of the airframe over the frequency range of
interest.

To obtain stability dertvatives from sihusotdal oscillation
testing, the responsec data are plotted on log modulus-
frequency charts (Bode charts) which are then examined
for the positlon of first and second order broeak points.
(One s aided here by corrclation with theorctically de-
rived transfer functions.) Stuce these breal points wre
determined by vartous spectfic combinntions of stabtlity
derivatives, catled “transfer functon coctactents, ' the
vahic of cuch derivative cannot e extabls hod s opasadidy,
However, {f the values of sovae of the derivative.s can
be obtined from wind timel cotimates or fvom ey
stude fHipht technfgeass, the rest e Qoen bedetoron d
from the transtor wction codtdetent valucs, The, o in
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no precise method known for obtaining stability deriva-
tives in general from frequency response plots; it is at
best a trial-and-error procedure, the usefulness of
which depends upan the familiarity of the analyst with
the particular frequency response and the particular air-
frame involved.

For certain special cases, however, several important
techniques have been developed. In the longitudinal
motions of conventional aircraft, for instance, it can be
shown that for frequencies greater than the natural fre-
quency of the phugoid the forward speed remains con-
stant during maneuvers. Consequently, in the range
of frequencies Involved in the longitudinal short period
motions, the equations of motion are reduced to two de-
grees of freedom, and the resulting frequency response
describes a simple second order system, This has led
to the concept of simple effective spring and damping
constants, k and b, which contain specific combinations
of static and dynamic stability derivatives,

The most obvious way of determining the effective spring
and damping constants, k and b, Is to analyze the free
oscillation response of the aircraft to any sort of con-
trol input, The spring constant k and the damping con-
stant b are determined respectively by the period of
the oscillation and the rate of decay in amplitude of
oscillation. This analysis technique, which {s known
as the "translent inspection method, " does not, of
course, imply the use of the forced oscillation flight
technique under discussion at the moment, but it should
be regarded as a possible source for obtalning k and b .

The second analysis technique assumes that forced
sinusoidal oscillation tests have been conducted and that
the data have been plotted in the form of log-modulus
frequency response charts. For the special case of an
assumed second order system, a complete set of trans-
parent templates can be constructed which show the
effect of different values of x andy on the frequency
response of the general second order system, These
templates are then compared with the frequency response
data obtained from flight tests, and appropriate values
of k and  are determined by a trial-and-error match-
ing process.

The third method of obtaining k and b utilizes forced
oscillation flight test data plottea in the form of a "'circle
diagram.'" In this method, the vector describing the
ratio of the maximum amplitude of the output to that of
the tnput and the corresponding phase angle are plotted
as a function of frequency. For an ideal second order
system, the shape of this plot is a circle, and from
certain geometric properties of the circle, k¥ and b can
be determined. (This method is described {n detall in
Reference 8.) Although the circle diagram technique
has been used with some success In the past, the newer
methods of analysis have proved to be more convenlent ,

{c) TRANSIENT RESPONSE TECHNIQUE

The transient response technique appears to be the most
pruactical flight test method for determining both the sta-
billty derivatives and the transfer functions of the air-
frame. ln this technlque, some measurable Input Iy
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applied to the airframe, and stability derivatives and
transfer functions are determined from the resulting
transient response data.

The advantages of the transient technique over the sinu-
soidal flight testing technique are that much less actual
flight time is required and that stability derivatives can
be obtained directly from the transient data without per-
forming a {requency response analysis. Further, the
frequenty response of an air{rame can be derived mathe-
matically from transient flight data by an application of
Fourler transform methods.

One of the limitations of the transient technlque is that
the form of the equations of motion of the airframe must
be known or assumed when stabillty derivatives are to be
derived directly from transient data. The problem then
usually arises as to whether or not higher order de-
rivatives, unsteady flow effects, and aeroelastic modes
should be included. It is theoretically possiblé to Include
all such effects and to determine which of them will
turn out to be negligible This, however, appearsto
be lmpracticable because accurate values for derivatives
making small contributions tc the total effect cannat be
obtained by such a process,

The airframe input which excltes the transient response
can be imparted by various means; motion of the aero-
dynamic control surfaces, change in thrust, firing of
rockets of known lmpulse to produce yawing and pitching
moments, and dropping of weights from wing tips to pro-
duce known rolling moments.

The input magnitude, duration, and form are important .
Step inputs are useful when the airframe is able to reach
a steady state value corresponding to the new trim flight
conditions imposed by the input, When the airplane
response cannot reach a steady state value, but diverges,
a pulse input {s more practical and also has the advan-
tage that the duration and shape of the pulse can be
chosen to produce a response whose major contribution
lies in the frequency range of interest. Arbitrary or
random inputs can also be used, but analysis of the re-
sults then becomes more laborious. Simplified response
approximations, which exist for step and impulse inputs,
are not available for more complex inputs, and insight
into the problem may be lost in the complexity of the
analysis.

Once transient flight data are available, there are at
present three general methods of extracting stability
derivative information from them:

1. Transient inspection method
2. Response curve fitting method
3. Fourier transform method

1. Transient Inspection Method

If the aircraft response to a pulse input contains an
oscillatory component whose frequency and damping are
such that the time, T, for the oscillations to damp

to half-amplitude, and the period, p , of the oscillations
may both be i..e..sured from the response records, the

|
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equivalent spring constant, k , and damping, b , cor-
responding to this particular mode, can be determined
from the following equations (see Reference 10):

0.48  38.48
R
(T2 P2
b - 1386
T,

The numerical values of k and b thus obtained from
flight test data may then be used in conjunction with the
approximate equations describing the airframe's char-
acteristic modes (see Chapter III} to obtain values of
certain combinatlons of static and dynamic stability
derivatives.

Because of the restrictive assumptions and approxi-
mations that may have to be made to get stability de-
rivatives by this method, the results can be relied upon
only to the extent that these assumptions and approxi-
mations have been established as applicable to a given
case,

The chief advantage of the transient inspection method
Is that it permits the order of magnitude of certain
stability derlvatives, such as C,;, €q,,(Cy, ~Cpy) , and

(C,,,q . cm&), to be established quickly and easily without

resorting to complex analytic procedures.
2. Response Curve-Fitting Methods

The response curve-fitting methods constst basically of
matching transient responses by assuming the form of
the equations of motion of the system to be known; the
unknown coefficlents of the various terms in the equa-
tions are then evaluated to match the transient data as
well as possible.

One of the simplest forms of this method is to set up
the equations of motion on an analog computer and, by
a trial~and-error procedure, to determine values of the
coefficients (stability derivatives) which best match
the transient response. The success of this technique
depends upon how accurately the values of stabitity de-
rivatives are known prior to the flight testing, and to a
certain extent, upon the experjence of the person per-
forming the analysis,

The analog computer technique of matching flight test
transients is also useful in refining stability derivative
values which have been obtained by any of the other
flight test reduction technlques,

Various muthematical techniques have been devised to
get stability derivatives directly from transient flight
data. At present, it appears that the most useful of
these methods are Greenberg's ' derivative method, "
Prony's method, and Shinbrot's jteration method. (These
methods are discussed in detall in References 9 and 10,)

In the "dertvative method” (Reference 9) a sutficient
number of values of the independent and dependent vari-
ables (swchas s, , 4 ,a, a, ete., for the longitudinal

case) are measured durlng the flight test transient so
that when they are inserted in the assumed equations of
motion, a set of equations will result which may then be
solved simultaneously for all the stability derivatives,

Prony's method (Reference 10) conslsts of fitting a sum
of exponentials to the response at a number of equally
spaced time ordinates; this method can be used to obtain
the transfer function coefficients (which are cambinations
of stability derivatives) from a step or impulse input .

Shinbrot's iteration method (Reference 10) uses the re-
sults of the derivative method or Prony's method as a
first approximation; a more accurate set of values is
then obtained by expansion in a Taylor's series #nd an
iterative procedure for obtaining better approximations .

Successive approximations are possible, of course, with
any of the methods mentioned, but this refinement may
not be justified at the present time,

Nearly all these mathematical techniques utilize some
form of least squares fit of the theoretical motion to the
flight test data. The statistical principle of least squares
states that the most probabie value of an unknown para-
meter is one which will cause the sum oi the squares of
the errors (the difference between the measured and
calculated values) to be a minimum. As pointed out in
Reference 7, the least squares-method can only be view-
ed as a mathematical means of "fairing' the experi-
mental data. Since it nearly always introduces addi-
tional complications, the justification of its use in pre-
ference to simple visual fairing methods is not apparent
for some cases,

In general, it appears that more work is required on
the practicablility of the various mathematical tech-
niques and on the related problem of statistical fairing
of redundant flight data before an optimum curve-{itting
technique can be developed.

3. Fourier Transform Method

In the Fourier transform method, the transient response
flight data are converted mathematically to frequency
response form by application of the Fourier integral
(Reference 89). These frequency response data can
then be analyzed for values of the transfer function
coefficients by any of the methods discussed in the sec-
tion devoted to the sinusoidal oscillation technique

One of the advantages of this method is that the {re-
quency response obtained as an intermediate step in
the computation of transfer function coefficients by this
procedure is often itself of interest in problems of auto-
matic stabilization, Another advantage is that the form
of the equations of motion of the system need not he
assumed as it does for the curve-fitting methods.

However, the Fourler transform method has the dis-
advantage that stability derivatives cannot be derived
slngly, for they occur in combinations as transfer func-
tion coefficients, A further limltation |s that the size
and shape of the input used in the flight test have a con-
slderable influenc ; . the accuracy with which the fre-
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quency response can be derived, and also upon the range
of frequencies for which that response is valid. For a
nulse input, for example, it appears that the frequency
response derived from the transient data will be appli-
rable only to a limited range of frequencies on either
side of the fundamental frequency of the pulse.
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In Reference 11, the Fourier transform method is used
successfully in obtaining transfer functions of a par-
ticular aircraft; however, no attempt is made to obtain
transfer function coefflcients or stability derivatives
from the transfer function dala.

SUMMARY

In the preliminary design stage of an airframe, the most
expedient method of obtaining stability derivatives is
by estimating from theory and making use of empirical
data from similar airframe configurations.

In the subsonic region (0 <M <,9), stability derivatives
can be estimated fairly well from theory by using the
geometry of the airframe and applying the Prandtl-
Glauert rule to account for compressibijlity.

In the high supersonic region ( 1.5 <M < 10, fairly good
estimates of some of the stability derivatives can be
made fram theory. In general, the higher the supersonic
Mach number, the more accurate the theory. Theoreti-
cal supersonic values are not available, however, for all
the derivatives, especially for the various possible com-
binations of wing, body, and tail configurations,

In the transonic and low supersonic region {9 <M <1.5)
theoretical methods are practically non-existent for
determining stability and control derivatives of complete
airframe configurations, Therefore, in estimating sta-
bility derivatives in this Mach number regime, empirical
data on similar airframe configurations must be used;
but the amount of such data is discouragingly small. In
the transonic region the method of omphiloskepsis has
been used successfully in estimating stability deriva-
tlves.

Aeroeclastic effects on the more important stability and
control derivatives can be calculated by theoretical
means,

Generally, then, methods for obtaining stability deriva-
tives by theory and by estimating from empirical data
on similar airframes is fairly good in the subsonic re-
gion, but poor in the transonic and supersonic region.

When the design of the airframe has been determined
to a certain extent, various wind tunnel tests, such as
those described in Section 3 of this chapter, can be
performed. Low speed conventionul wind tunnel tests
on a large model can be used to refine the theoretical
estimates and to obtain the stability derivatives for the
landing configuration. High subsonic wind tunnel tests
can be used to refine the estimates on compressibility
effects. Aeroeclastic models can be used to verify the
theoretically calculated aeroelastic trends. Because of
the limited accuracy of theoretical estimates in the
transonic and supersonic regions, it is almost im-
perative that transonic and supersonic tests be per-
formed on the particular configuration either in the wind
tunnel or by the rocket-firing technique,

I such a thorough medel testing program is conducted ,
the accuracy of the original estumates of stability and

control data should be increased so that it is entirely
adequate for the subsonic region and fairly good for the
transonic and supersonic regions.

At this stage of the airframe design, a full-scale pro-
totype will probably be ready. If past procedures are
followed, it is unlikely that more work will be performed
to obtain improved values of stability derivatives unless
the airplane exhibits particularly bad {lying qualities.
However, because of the stringent requirements imposed
upon the autopilot system and control feel system in
attaining desirable flying qualities, 1t is believed that the
refinement of aerodynamic derivatives should not stop
at this point, but rather that a certain portion of the
prototype flight testing should be devoted to this ¢nd.

In general, the accuracy of the values of derivatives
obtained from flight testing is consldered better than
that from any other method. The degree of accuracy
obtained depends upon the flight test technique, the
quality of the instrumentation, the data analysis tech-
nique, and, since some sort of averaging process must
be applied, the total number of samples taken.

Many of the static stability derivatives can be obtained by
means of steady flight testing techniques, provided that
values of some of the derivatives can be adequately
estimated from theory or wind tunnel test results. All
the stability derivatives can be obtained with varying
degrees of accuracy by matching the airplane's response
to pulse control inputs by a least square curve fitting
method, if the form of the equations of motion is known ,
or assumed,

Certain combinations of stability derivatives {transfer
function coefficients) can be obtained from log frequency
response (Bode) plots of the airframe by the trial-and-
error curve fitting technique or by the circle diagram
method. These log frequency response plots can be
obtained directly by sinusoidal oscillation flight testing
or indirectly by analyzing airplane transient responses
to pulse inputs.by application of the Fourier integral .

Because of the large amount of information obtained
from a relatively smiall amount of flight time, the method
of obtaining the transient response to a pulse input
appears to offer the most advantages as far as the {light
testing technique is concerned. In obtaining stability de-
rivatives from these transient data, it {s not known
whether the direct method of least squares curve fitting
to the transient, or the indirect method of first convert-
ing to frequency response plots and then to stability de-
rivatives is the better.
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